• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

金融資本市場におけるリスク中立確率測度およびリスク回避度に関する統計的推測

研究課題

研究課題/領域番号 21K01426
研究機関大阪大学

研究代表者

大屋 幸輔  大阪大学, 経済学研究科, 教授 (20233281)

研究期間 (年度) 2021-04-01 – 2025-03-31
キーワード計量ファイナンス / リスク回避度
研究実績の概要

金融市場において取引に参加している経済主体の取引行動は,彼らのリスクに対する態度を投影したものと考えることができる。そのリスクに対する態度は,経済学的には市場参加者のリスク回避度として特定化されるものであるが,直接,観測できるものではない。従来の研究では,市場原理の中でも無裁定性に立脚し,市場で観測されるオプション価格データをもちいてリスク回避度を推定する研究が行われてきた。しかしながら仮定されている効用関数は理論展開を容易にするものの,経済主体のリスクに対する態度を一つのパラメータに集約するものであり,必ずしも十分な表現力を持っているとは言えなかった。本研究ではその効用関数を先行研究で採用されていたものよりも広いクラスへ拡張し,経済主体の特性を的確にとらえることを目指している。
これまで関連研究で採用されてきた指数型効用関数はパラメータ推定で利用される積率母関数に基づく目的関数の導出を容易にしていたが,研究初年度ではEpstein-Zin型の効用関数に拡張した場合において,興味の対象であるパラメータの推定可能性について検討した。その結果,分布に対する仮定によっては推定可能な定式化ができるものの,そのような定式化から導かれる帰結は先行研究で採用されていた効用関数から導かれるものよりも制約的なものであることがわかった。推定に関しては,目的関数が非線形であることから,最適化に伴う問題を避けるためベイズ推定の方向性についても検討し,関連する研究成果については国際学会において報告された。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

分析に利用する効用関数を指数型から Epstein-Zin型へ拡張する方向として,確率分布を具体的に特定化することで,推定に用いる目的関数の導出を試みた。その結果,特定の分布のもとでの導出は可能であるものの,そのような定式化から導かれる帰結は先行研究で採用されていた効用関数から導かれるものよりも制約的なものであることがわかった。他方,今後計画されている実証研究ではオプション価格を利用した推定が必要となるため,日次レベルでのオプションデータの整備,加工が必要となってくる。データ自体は準備できているが,取引可能な限月の中から直近2限月でのオプション価格を抽出し,推定に必要な形式へ変換するなどの計算体制の準備を行なった。以上のことから,概ね計画は推進していると判断する。

今後の研究の推進方策

効用関数の拡張に関しては,Epstein-Zin型のもとで,利用可能な確率分布の探究と,目的関数となる非線形関数の近似法などを適用することが可能かどうかの検討を行っていく。先行研究では推定に際しては,リスク中立測度のもとでの分散,歪度,尖度を用いているが,リスク中立測度の特徴をとらえる他の統計量の適用可能性も併せて検討する。実証研究に関しては,整備されたオプション価格データをもちいて推定されたリスク中立測度のものでの高次のモーメントが必要となるため,その算出のための体制を整える計画である。

  • 研究成果

    (1件)

すべて 2021

すべて 学会発表 (1件) (うち国際学会 1件)

  • [学会発表] Bayesian analysis of price discovery on time-varying partial adjustment model2021

    • 著者名/発表者名
      Kenji Hatakenaka and Kosuke Oya
    • 学会等名
      The 4th International Conference on Econometrics and Statistics
    • 国際学会

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi