• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

半無限旗多様体の同変 K-群とアフィン量子群のレベル・ゼロ表現の研究

研究課題

研究課題/領域番号 21K03198
研究機関東京工業大学

研究代表者

内藤 聡  東京工業大学, 理学院, 教授 (60252160)

研究期間 (年度) 2021-04-01 – 2026-03-31
キーワード代数学 / アフィン量子群の表現論 / アフィン・リー環の表現論 / レベル・ゼロ表現 / 半無限旗多様体 / 旗多様体の量子 K-環 / シューベルト・カリキュラス
研究実績の概要

(連結かつ単連結な) 複素単純代数群 G に付随する無限次元代数多様体である半無限旗多様体の (G の極大トーラス H に関する) 同変 K-群は、通常の有限次元旗多様体 G/B の H-同変量子 K-環 QK_{H}(G/B) と密接な関係にある事が知られている; ここで、B は (H を部分群として含む) G の Borel 部分群である。そして、G に付随する半無限旗多様体の H-同変 K-群は、G のリー環をアフィン化する事で得られるアフィン・リー環の普遍包絡環の量子変形であるアフィン量子群のレベル・ゼロ表現、特にレベル・ゼロ Demazure 加群の次数付き指標と密接に関係している。従って、H-同変量子 K-環 QK_{H}(G/B) の環構造の研究を、アフィン量子群のレベル・ゼロ Demazure 加群の次数付き指標の研究に帰着させる事が出来る。この事実は、幾何学的対象である QK_{H}(G/B) の研究を、本質的にはアフィン量子群の表現論に帰着させられる事を意味している。
本年度の研究成果として、河野隆文氏 (早稲田大学講師) との共同研究により、G が C 型 (即ち、G = Sp(2n, C)) の場合に、旗多様体 G/B の H-同変量子 K-環 QK_{H}(G/B) を、ある多項式環の明示的なイデアルによる剰余環として表示する事が出来た。
また、佐垣大輔氏 (筑波大学教授)、C. Lenart 教授 (New York 大学), W. Xu 氏 (Virginia 工科大学) との共同研究により、G が A 型 (即ち、G = SL(n, C)) の場合に、H-同変量子 K-環 QK_{H}(G/B) の量子積に関する構造定数についての基本的な予想である "因子公理 (divisor axiom)" 予想を、部分的にではあるが解決する事が出来た。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

令和 5 年度の当初の研究計画の通り、G が C 型 (即ち、G = Sp(2n, C)) の場合に、有限次元旗多様体 G/B の H-同変量子 K-環 QK_{H}(G/B) をある多項式環の明示的なイデアルによる剰余環として表示する事が出来た; このような (Borel 型の) 表示については、これまではイデアルの生成元に関する予想すら無かった状態であったので、その予想の定式化から行う必要があった。また、G が A 型 (即ち、G = SL(n, C)) の場合に、QK_{H}(G/B) の量子積に関する構造定数についての基本的な予想である "因子公理 (divisor axiom)" 予想を、部分的にではあるが解決する事が出来た; この "因子公理" は、一般の部分旗多様体の量子コホモロジー環の構造定数の決定において基本的な役割を果たすものであるが、量子 K-環においては未だ予想に止まっているため、その解決が強く望まれる。また、この予想は、(A 型の) Grassmann 多様体や two-step 旗多様体の場合には一般的に解決されている "quantum = classical" 予想と密接に関連した予想でもある。
上述の結果はどちらも、本研究課題における大きな研究成果であると考えられ、現在までの進捗状況については、おおむね順調に進展していると言える。
一方で、G = Sp(2n, C) の場合に、H-同変量子 K-環 QK_{H}(G/B) の剰余環としての上記の表示において、各 Schubert 類の明示的な多項式代表 (即ち、C 型量子二重 Grothendieck 多項式) としてどの様な多項式を取れば良いかについては、未だその予想すら得られていない。その意味では、今後の進捗状況は予断を許さないと言える。

今後の研究の推進方策

第一に行うべきなのは、G が C 型 (即ち、 G = Sp(2n, C)) の場合に、H-同変量子 K-環 QK_{H}(G/B) を多項式環の剰余環として表示したときに、各 Schubert 類の明示的な多項式代表 (即ち、C 型量子二重 Grothendieck 多項式) としてどのような多項式を取れば良いか、という問題を解決する事である。これについては、QK_{H}(G/B) における (拡大 Dynkin 図形の頂点 0 に対応する) 量子 Demazure 作用素 D^{Q}_{0} の明示的な表示が既に得られているので、それを利用する事で予想を立て、さらにその予想を解決する事が出来るのではないかと期待している。さらに、G = Sp(2n, C) に付随する affine Grassmann 多様体の K-ホモロジーとの間の K-Peterson 同型の明示的な記述を与えたいと考えている。
また、G が A 型 (即ち、G = SL(n, C)) の場合の QK_{H}(G/B) における量子積に関する構造定数についての "因子公理 (divisor axiom)" 予想についても、その解決のための道具自体はほぼ揃っていると思われるので、部分的解決に使われた手法を拡張する事で完全解決を目指したい; この予想の解決において本質的な役割を果たすと考えられるのは、これまでの我々の研究で既に得られている Chevalley formula である。そしてさらに、G = Sp(2n, C) の場合にも "因子公理" 予想に取り組みたい。この "因子公理" は、旗多様体の量子コホモロジー環の構造定数の決定において基本的な役割を果たすものであるが、量子 K-環においては未だ予想に止まっているため、その完全解決が強く望まれている。

次年度使用額が生じた理由

アメリカ数学会が発行する雑誌 "Transactions of the American Mathematical Society" に掲載された論文をオープンアクセスにするために支出する金額に関して、その正確な数字が為替変動の影響を受けるために年度末ぎりぎりまで確定しなかった。それが原因となって2023 年度の所要額を完全に使い切る事が出来ず、結果として若干の次年度使用額 (9189 円) が生じた。
しかし、その金額は少額であるので、2024 年度分として請求した助成金の当初からの使用計画にはほとんど影響は生じない。なお、この 9189 円の次年度使用額は、2024 年度初めにこれから必要となる文房具を購入するために使用する予定である。

  • 研究成果

    (8件)

すべて 2024 2023 その他

すべて 国際共同研究 (1件) 雑誌論文 (6件) (うち国際共著 5件、 査読あり 6件、 オープンアクセス 2件) 学会発表 (1件) (うち招待講演 1件)

  • [国際共同研究] New-York 州立大学Albany 校/Virginia 工科大学(米国)

    • 国名
      米国
    • 外国機関名
      New-York 州立大学Albany 校/Virginia 工科大学
  • [雑誌論文] A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory2024

    • 著者名/発表者名
      Lenart Cristian、Naito Satoshi、Sagaki Daisuke
    • 雑誌名

      Selecta Mathematica

      巻: 30 ページ: Paper No. 39

    • DOI

      10.1007/s00029-024-00924-8

    • 査読あり / 国際共著
  • [雑誌論文] Closed k-Schur Katalan functions as K-homology Schubert representatives of the affine Grassmannian2024

    • 著者名/発表者名
      Ikeda Takeshi、Iwao Shinsuke、Naito Satoshi
    • 雑誌名

      Transactions of the American Mathematical Society, Series B

      巻: 11 ページ: 667~702

    • DOI

      10.1090/btran/184

    • 査読あり / オープンアクセス
  • [雑誌論文] Quantum K-theory Chevalley formulas in the parabolic case2024

    • 著者名/発表者名
      Kouno Takafumi、Lenart Cristian、Naito Satoshi、Sagaki Daisuke
    • 雑誌名

      Journal of Algebra

      巻: 645 ページ: 1~53

    • DOI

      10.1016/j.jalgebra.2024.01.026

    • 査読あり / 国際共著
  • [雑誌論文] Identities of Inverse Chevalley Type for the Graded Characters of Level-Zero Demazure Submodules over Quantum Affine Algebras of Type C2023

    • 著者名/発表者名
      Kouno Takafumi、Naito Satoshi、Orr Daniel
    • 雑誌名

      Algebras and Representation Theory

      巻: 27 ページ: 429~460

    • DOI

      10.1007/s10468-023-10221-1

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] New structure on the quantum alcove model with applications to representation theory and Schubert calculus2023

    • 著者名/発表者名
      Kouno Takafumi、Lenart Cristian、Naito Satoshi
    • 雑誌名

      Journal of Combinatorial Algebra

      巻: 7 ページ: 347~400

    • DOI

      10.4171/JCA/77

    • 査読あり / 国際共著
  • [雑誌論文] Inverse K-Chevalley formulas for semi-infinite flag manifolds, II: Arbitrary weights in ADE type2023

    • 著者名/発表者名
      Lenart Cristian、Naito Satoshi、Orr Daniel、Sagaki Daisuke
    • 雑誌名

      Advances in Mathematics

      巻: 423 ページ: 109037~109037

    • DOI

      10.1016/j.aim.2023.109037

    • 査読あり / 国際共著
  • [学会発表] A presentation of the torus-equivariant quantum K-theory ring of flag manifolds type A2023

    • 著者名/発表者名
      内藤 聡
    • 学会等名
      第 19 回代数・解析・幾何学セミナー
    • 招待講演

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi