• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

対称関数を基軸とした表現論,組合せ論の研究

研究課題

研究課題/領域番号 21K03202
研究機関名古屋大学

研究代表者

岡田 聡一  名古屋大学, 多元数理科学研究科, 教授 (20224016)

研究分担者 石川 雅雄  岡山大学, 自然科学学域, 教授 (40243373)
研究期間 (年度) 2021-04-01 – 2024-03-31
キーワード対称関数 / 組合せ論 / 表現論 / 可積分系
研究実績の概要

この研究では,対称関数の間のさまざまな関係式を見出し,それらを表現論,組合せ論に展開することを目指し,(A) 古典型ルート系に付随したSchurのQ関数,(B) 平面分割の数え上げ問題,(C) d-completeな半順序集合上のP-partition,の3つのパートに分けて研究を進めた.
2022年度の研究のパート(A)では,佐藤-毛織によってKdv方程式,変形KdV方程式の研究の中で導入された関数(を対称関数とみなしたもの)がSchurのQ関数に一致するという水川-中島-山田の予想の証明に成功した.
また,パート(B)では,Huh, Kim, Krattenthalerとの共同研究を継続した.ある種の制限を課した Schur関数の無限和を1つの行列式として表すアフィン版Gordon-Bender-Knuth型等式の定式化・証明を昨年度の研究で行ったが,極限を考え特殊化を施すことによって,この等式から奇数次直交Lie代数のある種の既約表現の一般線型Lie代数への制限の分解がわかる.今年度の研究では,偶数次直交Lie代数,斜交Lie代数の同様の分岐則を導くようなアフィン版Gordon-Bender-Knuth型等式の新たな変種を見出すとともに,これらを統一的に証明する枠組みを与えた.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

これまでの研究で培われた手法,アイデアを用いて,可積分系に由来する水川-中島-山田予想を解決でき,可積分系への新たな展開が見いだされた.

今後の研究の推進方策

パート(B)では,偶数次直交Lie代数,斜交Lie代数に関係したアフィン版Gordon-Bender-Knuth型等式の標準盤などの数え上げ組合せ論への応用を目指したい.

次年度使用額が生じた理由

2022年度前半に参加を予定していた研究集会がオンラインに変更になるなどの理由で,次年度使用額が生じた.翌年度分と合わせて旅費等に使用する予定である

  • 研究成果

    (10件)

すべて 2023 2022 その他

すべて 国際共同研究 (2件) 雑誌論文 (2件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (6件) (うち国際学会 3件、 招待講演 5件)

  • [国際共同研究] Universitat Wien(オーストリア)

    • 国名
      オーストリア
    • 外国機関名
      Universitat Wien
  • [国際共同研究] Sungkyunkwan University(韓国)

    • 国名
      韓国
    • 外国機関名
      Sungkyunkwan University
  • [雑誌論文] Extended Schur’s Q-functions and the full Kostant-Toda hierarchy on the Lie algebra of type D2023

    • 著者名/発表者名
      Yuji Kodama and Soichi Okada
    • 雑誌名

      Physica D: Nonlinear Phenomena

      巻: 443 ページ: 133589

    • DOI

      10.1016/j.physd.2022.133589

    • 査読あり / 国際共著
  • [雑誌論文] Minor summation formula and classical group characters of nearly rectangular shape2022

    • 著者名/発表者名
      岡田 聡一
    • 雑誌名

      京都大学数理解析研究所講究録

      巻: 2216 ページ: 82--96

    • オープンアクセス
  • [学会発表] Enumeration of shifted plane partitions of double staircase shape via intermediate symplectic characters2022

    • 著者名/発表者名
      Soichi Okada
    • 学会等名
      Joint Mathematics Meetings, AMS Special Session on Partition Theory and Related Topics
    • 国際学会 / 招待講演
  • [学会発表] Enumeration of standard tableaux and symmetric functions2022

    • 著者名/発表者名
      岡田 聡一
    • 学会等名
      Japanese Conference on Combinatorics and its Applications 2022
    • 招待講演
  • [学会発表] Positivity conjectures for symplectic Q-functions2022

    • 著者名/発表者名
      岡田 聡一
    • 学会等名
      Toyama Workshop on Quantum Groups and Related Topics
    • 招待講演
  • [学会発表] Symplectic Q-functions2022

    • 著者名/発表者名
      Soichi Okada
    • 学会等名
      Integrable Probability, Combinatorics and Representation Theory
    • 国際学会 / 招待講演
  • [学会発表] Affine Gordon-Bender-Knuth identities and related combinatorics2022

    • 著者名/発表者名
      岡田 聡一
    • 学会等名
      組合せ論的表現論における最近の展開
  • [学会発表] Applications of the minor-summation formula to combinatorics and representation theory2022

    • 著者名/発表者名
      Soichi Okada
    • 学会等名
      Enumerative Combinatorics
    • 国際学会 / 招待講演

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi