• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

ハンドル体結び目の幾何

研究課題

研究課題/領域番号 21K03217
研究機関筑波大学

研究代表者

石井 敦  筑波大学, 数理物質系, 准教授 (00531451)

研究期間 (年度) 2021-04-01 – 2026-03-31
キーワード結び目理論
研究実績の概要

本年度に実施した研究の成果は、向き付けられた絡み目に対してシェイドカンドル表示を定義したことです。絡み目補空間の基本群(絡み目群)は、絡み目ダイアグラムから得られる表示(ウィルティンガー表示)を持ちます。二つの群が同型であるための必要十分条件は、二つの群の群表示がティーツェ変換の有限列で移りあうことです。これを利用して、群と群表現の組に対する(ねじれ)アレクサンダー不変量の不変性を示すことができます。ただし、このとき、(ねじれ)アレクサンダー不変量は単元倍の不確定さを持って不変になります。この不確定さは、ウィルティンガー表示に対して強いティーツェ変換を用いることで軽減させることができますが、完全に取り除くことはできません。このことは、絡み目ダイアグラムからウィルティンガー表示を得るときに不変量の補正に関する情報が失われていることを示唆しています。失われた情報が何であるのかを明らかにし、また、群の一般化であるカンドルに対して適応範囲を広げたものが、向き付けられた絡み目に対するシェイドカンドル表示です。シェイドカンドル表示は、ウィルティンガー表示に領域、回転数、ねじれ数の情報を付加したものとして定義されます。実際に(カンドル)(ねじれ)アレクサンダー不変量を補正することができます。本研究に関連した研究会議として「ハンドル体結び目とその周辺16」が10月に大阪大学で開催されました。この研究会議では、空間曲面の亜群ラックコサイクル不変量についての研究、結び目と絡み目のトンネル数と素分解についての研究がありました。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

研究実績の概要で述べたように研究成果が出ている。本研究に関連する研究会議も滞りなく開催されている。

今後の研究の推進方策

研究を効率よく進めるために関連する研究会議やセミナーなどに参加し、情報収集を行います。また研究会議やセミナーなどでの発表を通して、研究成果に対するフィードバックを得ることで、研究成果のさらなる洗練を進めます。適切な研究会議やセミナーへの参加に加えて、研究会議「ハンドル体結び目とその周辺17」を開催します。研究会議の開催によって人的交流を促進し、研究者同士の活発な議論を引き起こすことで、深みのある研究を加速させます。

次年度使用額が生じた理由

理由:出張日程の延期のため
使用計画:旅費またはオンライン会議の費用として使用する予定である。

  • 研究成果

    (1件)

すべて 2023

すべて 学会発表 (1件) (うち招待講演 1件)

  • [学会発表] Quandle twisted Alexander invariants with cohomologous Alexander pairs2023

    • 著者名/発表者名
      石井敦
    • 学会等名
      数理情報科学セミナー
    • 招待講演

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi