• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Ergodic theory for conformal dynamics with applications to fractal geometry

研究課題

研究課題/領域番号 21K03269
研究機関名古屋大学

研究代表者

イェーリッシュ ヨハネス  名古屋大学, 多元数理科学研究科, 准教授 (90741869)

研究期間 (年度) 2021-04-01 – 2024-03-31
キーワードFuchsian groups / Hausdorff dimension / Large deviations
研究実績の概要

We studied the interplay of dynamical, geometric and stochastic properties of conformal dynamical systems from the viewpoint of ergodic theory. We focused mainly on the dynamics of Fuchsian groups admitting a Dirichlet fundamental domain with even corners. For the associated hyperbolic surface, we obtained new results on the Hausdorff dimension spectrum of homological growth rates associated with oriented geodesics. In particular, we are able to express the dimension in terms of a generalized Poincare exponent associated with a given inverse temperature.
As a stochastic counterpart we studied the probability to observe a certain homological growth rate. It turns out that the growth rate satisfies large deviations with a rate function closely related to the Hausdorff dimension spectrum. We have combined distortion arguments based on some geometric properties of the geodesic flow with the symbolic thermodynamic formalism for countable Markov shits. This is a joint work with Hiroki Takahasi (Keio U.).
We also had some progress on transient dynamics on the real line with a reflective boundary. In particular, we obtained formulas for the topological pressure function which indicate a possible phase transition which arises from the reflective boundary.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Although some travel plans had to be cancelled because of covid-19 restrictions in summer, we had overall substantial progress on topics of this project.

今後の研究の推進方策

The large deviation results for Fuchsian groups shall be completed within a few weeks. The project on transient dynamics on the real line with a reflective boundary shall be completed when visiting University Bremen in summer 2023. A first preprint on thermodynamic formalism for infinitely generated Schottky groups shall be completed in autumn 2023.

次年度使用額が生じた理由

Again, in summer 2022, overseas travel had to be postponed because of the pandemic. We plan to use the remaining funds to visit Germany and USA in summer/autumn 2023.

  • 研究成果

    (5件)

すべて 2023 2022 その他

すべて 国際共同研究 (2件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (2件) (うち招待講演 1件)

  • [国際共同研究] Prof. Marc Kesseboehmer/University Bremen(ドイツ)

    • 国名
      ドイツ
    • 外国機関名
      Prof. Marc Kesseboehmer/University Bremen
  • [国際共同研究] Prof. Mariusz Urbanski/University North Texas(米国)

    • 国名
      米国
    • 外国機関名
      Prof. Mariusz Urbanski/University North Texas
  • [雑誌論文] Thermodynamic formalism for transient dynamics on the real line2022

    • 著者名/発表者名
      Groeger M、Jaerisch J、Kesseboehmer M
    • 雑誌名

      Nonlinearity

      巻: 35 ページ: 1093~1118

    • DOI

      10.1088/1361-6544/ac45ea

    • 査読あり / 国際共著
  • [学会発表] Multifractal analysis of the geodesic flow on hyperbolic surfaces2023

    • 著者名/発表者名
      Johannes JAERISCH and Hiroki Takahasi
    • 学会等名
      International Workshop on Ergodic Theory, Dynamical Systems, and Climate Sciences
  • [学会発表] Multifractal analysis of the geodesic flow on hyperbolic surfaces2022

    • 著者名/発表者名
      Johannes Jaerisch
    • 学会等名
      Complex dynamics and related topics 2022, December 2022, Kyoto University
    • 招待講演

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi