研究実績の概要 |
Feynman摂動展開にあらわれる積分を次元正則化した一般化 Feynman 積分は GKZ 超幾何関数で表現できる. GKZ超幾何関数はholonomic系を満たしその方程式の具体形が知られているが, その方程式系に付随する全微分方程式系(Pfaffian方程式)の具体形は知られていない. さまざまな 1-loop diagram に付随する一般化 Feynman 積分のみたす全微分方程式(Pfaffian方程式)を効率的に求める手法---Macaulay matrix の方法を研究し, その実装およびアルゴリズムの詳細を説明した論文を公開した. この方法ではPfaffian方程式の係数行列成分の有理式が計算量の限界を超えてしまい計算できなくても評価したい点を与えれば係数行列の数値を決定できる. この方法は漸化式による値の計算や微分方程式の数値解法を適用した積分の計算にも利用できる. この方法を活用して統計に現れるGKZ系のcontiguity relation の生成, たとえば 4-cycle model の数値contiguity relation の導出をおこなった. GKZ系はパラメータを一般に設定してあるため扱いやすいholonomic系であるが, Feynman積分や統計の正規化定数ではこれらのパラメータが多様体上に制限される. GKZ系やより一般にholonomic系のパラメータを制限する確率算法を開発し, それにより rank が100以上のGKZ系でも制限計算が可能となった. たとえば double loop 0 mass モデルに対する Feynman 積分が満たすPfaffian方程式をこの制限計算アルゴリズムで導出した. またHornの超幾何系に対してその特異点である超曲面への制限の計算も可能になった. この制限を利用し超曲面の上の正則解の数値計算がうまくいくことを示した.
|