研究実績の概要 |
コンパクトリーマン面間の正則写像の剛性に関する緒性質を,ヤコビ多様体間の準同型の言葉で表現し,それら定理の結びつきについて,新しい視点を提供することを目指して研究を進めた.特に,種数2以上のコンパクトリーマン面間の正則写像について,ホモロジー群間に誘導される準同型による表現の研究を行った. 「種数2以上のコンパクトリーマン面X, Y間の正則写像の位数が素数であるとき,ホモロジー群間に誘導される準同型による表現は,X, Yで標準ホモロジー基底をうまく取れば,いくつかの行列表現のうちどちらかになる.」ことがH.H. Martensにより示されている.X, Yで標準ホモロジー基底をうまく取り,限られた行列表現(normal formと呼ばれる)に帰着させるという問題は,もともとはリーマン面の周期行列のreductionに関するポアンカレの研究から派生したものである.その後の研究でH.H. Martensの上の結果,normal formの数は2つの表現行列であることが示せていた.これを発展させて,結局正則写像の位数が素数であるときは,「標準ホモロジー基底をうまく取ればの」部分は正則自己同型であり,正則写像の数は,normal formの数2つに,X,Yの正則自己同型の数を掛けたもの以下であると予想し,証明を考えてきた.結果としては,まだ成功していない.
|