• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

解析的手法による確率過程の研究

研究課題

研究課題/領域番号 21K03298
研究機関青山学院大学

研究代表者

松本 裕行  青山学院大学, 理工学部, 教授 (00190538)

研究期間 (年度) 2021-04-01 – 2025-03-31
キーワード拡散過程 / ブラウン運動 / オルンシュタイン-ウーレンベック過程
研究実績の概要

ブラウン運動の球面への到達時刻と到達場所の同時分布に関して,その確率密度の具体形を球面調和関数を用いて与えた.結果を論文の形にして投稿し受理された.確率密度を,ベッセル過程の到達時刻の確率密度と球面上の確率測度の重ね合わせて書くことによって,従来得られていなかった時間パラメータを大きくしたときの漸近挙動を与えることに成功したことが成果の一つである.
オルンシュタイン-ウーレンベック確率過程に対して,球面への到達時刻と到達場所の同時分布が確率密度をもつことを示し,その具体形を与えることに成功した.結果は上述のブラウン運動の場合対する結果を用いた自然なもので,やはり時間パラメータを大きくしたときの漸近挙動を与えることができた.成果は数学会や研究集会において発表して多くの研究者と研究連絡を行った後,確率論の専門誌に投稿した.
ブラウン運動と同じ調和測度をもつ確率過程は,2次元の場合に生成作用素が滑らかな係数をもつ2次の偏微分作用素であれば,あるリーマン計量に対応するラプラス-ベルトラミ作用素であることを以前示した.一方,リース測度との関係があることを最近知り,これらを総合的に理解しようと試みている.
研究課題にあげたセルバーグ跡公式に関しては,正定値行列のなす対称空間上で新しい跡公式を示そうとしたが特筆すべき進展はなかった.ラプラス-ベルトラミ作用素に対応する拡散過程を有力な道具として用いることができると考えている.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

ブラウン運動,オルンシュタイン-ウーレンベック過程の球面への到達時刻と到達場所に関する研究は,当初の予想よりきれいな形に書けることが分かり前者は論文の形で発表できることになった.ブラウン運動の管状近傍の研究は予想通りに進んでいる.
これらの研究に時間と労力をさいたために,2次元拡散過程やセルバーグ跡公式の研究に労力を注入できなかったことが残念である.

今後の研究の推進方策

オルンシュタイン-ウーレンベック過程の到達時刻と到達場所に関する研究を基礎に,その管状近傍の研究に進みたい.空間的な一様性がないことを克服する議論が不可欠だと考えている.
2次元拡散過程に関しては,リース測度との関係を詳細に検討して,擬等角写像との関係も含めて総合的な理解が得られると考えている.

次年度使用額が生じた理由

研究代表者の体調悪化により,予定していた研究集会への出席ができなかったため.今年度,別の研究集会に参加して,研究連絡や共同研究を行う予定である.

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi