研究実績の概要 |
I succeeded to build a laser Doppler-interferometer, connected to a high-speed sampling oscilloscope, with which oscillation-amplitudes at 1~5kHz below picometer-ranges (<10^-12 m) could be measured. The first attempt of building such an instrument lagged clearly in polarization stability as the measured ground noise could not be lowered below 1pm/Hz^(1/2) even with a maximum sampling rate of 5MHz. The last measured ground noise is now at 0.13pm/Hz^(1/2). The instrument has experienced upgrades regarding the polarization stability in the form of Glan-Taylor prisms which are now in front of the waveplates on the recombining beam-splitter side and a Faraday isolator at the laser-input. Furthermore, care has been taken to ensure an equal optical path length for both the reference and the signal beam path by using polarization maintaining fibers. This increased the coherence of both beams and thus also the contrast of the observed fringes at the detectors. One minor aspect of the conducted research was to ensure the usability of the Piezo-test chip even for oszillation amplitudes below a picometer. This is important to keep the dynamic constrast low and thus the resolution of the measurements high. The results clearly proof the capability of the test-chip.
|