研究実績の概要 |
第一原理計算を用いて2次元物質や表面における様々な安定構造が予測されているが、探索の自由度(元素の組合せ、組成、構造)が膨大であり、未だ研究されていない特異な構造が数多く存在する。本研究では、第一原理的手法に基づく網羅的な格子振動計算を実行することで、金属、規則合金、イオン性結晶が安定な2次元構造を持つことを明らかにしてきた。今年度は、表面系の特異な安定構造を探るため、「最密充填ではない金属表面」に注目した。具体的には、貴金属Cu, Ag, Auの(100)表面に異種原子X(希ガスを除くHからBiまで)が吸着したときに形成されるc(2x2)構造に注目し、原子Xの表面凹凸を第一原理計算に基づき計算した。その結果、(1)X=H, B, C, Nにおいては吸着原子が金属基板の下に大きく潜り込み、一方、原子半径のさらに小さな酸素やフッ素原子は表面にトラップされる現象を予測した。電荷密度解析を行うことで、後者は基板と吸着原子との電荷の授受に由来することを明らかにした。また、(2)原子半径、電気陰性度、族、周期、質量を考慮した機械学習モデルを用いることで、表面凹凸を高精度(正答率85%以上)の予測ができること示した。 その他、昨年度に実施した研究成果をまとめ、論文として発表した。具体的には、(1)B2型(CsCl型)化合物の動的安定性、(2)2次元イオン性結晶(IA-VIIアルカリハライド)の動的安定性、(3)第一原理計算とベイズ最適化を組合せた2次元Cu-Au合金の安定構造探索に関する研究成果を発表した。
|