研究課題/領域番号 |
21K04689
|
研究機関 | 京都工芸繊維大学 |
研究代表者 |
朱 文亮 京都工芸繊維大学, 材料化学系, 教授 (50827516)
|
研究分担者 |
吉田 裕美 京都工芸繊維大学, 分子化学系, 准教授 (40314306)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
キーワード | カーボンハイブリッド化合物電極材料 |
研究実績の概要 |
2021年度に完成したPVDF/炭酸塩複合材料システムにおけるPVDFの脱フッ化水素反応機構の解明と活性炭素生成プロセスの制御に基づいて、2022年度に最適化された合成プロセスを使用して、PKCシステムの材料性能を最大化するために、一連の体系的な実験研究を実施した。これは色んな添加剤や異なる熱処理温度で電極の成長後のアルカリ処理などが含まれている。同様に、システムの化学組成、微細構造や性能は、ラマン分光法、X線回折、X線光電子分光法、示差熱分析-熱重量法、示差走査熱量測定、及び電気化学インピーダンス分光法などを含む様々な種類の技術を用いて分析された。 PKCシステムにおける KHCO3 の添加の影響を調査し、最適量のKHCO3 の存在により PVDF 脱フッ化水素反応がさらに促進され、材料特性が改善されることが示された。製造された複合電極の成長後のアルカリ熱処理を異なる温度で調べたところ、生成された炭素の表面構造の変化と、表面の多孔性と比表面積の他に、炭素の微細構造が炭酸成分の含有量に依存していることが明らかにした。遷移金属の炭酸塩および水酸化物/酸化物の添加が材料の構造および性能に及ぼす影響も、決めた手順に従って調査され、複合材料の関連特性を測定した。デバイスのさらなる電気化学的性能は、サイクリックボルタンメトリー、定電流充放電、電気化学インピーダンス分光法などを通じて分析されている。 現段階の研究成果として、2編の論文が掲載されており、もう1編は執筆中です。研究内容の会議での発表について、2022年5月に京都で行われた純正・応用化学セミナー、2023年3月に野田市で行われた日本化学会第103春季年会、更に2023年5月に大阪で行われたThe Inaugurate World Chemistry Congress 2023 (IWCC-2023) 国際会議にて発表した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
申請書に記載のとおり、2022年度末までの主な目標は、PKC合成プロセスの最適化を行い、材料性能の最適化を図ることでした。2021年度にはPVDFの脱フッ化水素反応のメカニズムを解明した上で、本年度では、最適化の合成プロセスを使用して、KHCO3、水、遷移金属酸化物などの添加物をシステムに加え、又は成長後異なる熱処理温度でのアルカリ処理を行うことで、PKCシステムの材料性能を最大化することを試みました。 体系的な研究に従って、PKCに水やKHCO3を適切に添加すると、PVDF の脱フッ化水素反応がさらに促進されることが明らかにした。熱処理温度や炭酸塩含有量の違いによるPVDF/K2CO3系とPVDF/KHCO3系の比較から、そのメカニズムを解明した。アルカリの使用による、製造された材料の成長後の熱処理を、さまざまな温度で調べた。アルカリ溶液で低温処理すると、生成された炭素に構造変化が見られ、PVDF の表面構造が変化していることが明らかにした。次に、炭酸塩成分と水との異なる反応によりOH-が生成される (つまり、溶液の異なる pH) ため、炭酸塩成分の含有量に依存するPVDF脱フッ素化水素反応の制御が可能となりました。 遷移金属の炭酸塩や水酸化物/酸化物の添加が材料の構造および性能に及ぼす影響も、上記の手順に従って調査され、複合材料の関連特性が測定されました。活性炭素の微細構造と副反応が添加剤の含有量に顕著に依存していることを示しました。単純な全固体デバイス構造がコンデンサの製造に採用されており、デバイスの電気化学的性能を含むさらなる特性評価が行っています。 研究成果として、2編の論文が国際ジャーナルに掲載済、もう1編の原稿は現在準備中である。また、研究成果は国内、国際会議で3回発表した。新型コロナの影響で、予定していた四川大学への研究調査打合せは実施出来なかった。
|
今後の研究の推進方策 |
今後も予定通り実施していきたいと考えております。遷移金属酸化物/水酸化物(MO)の添加が材料の構造と性能に及ぼす影響は、上記の構造と特性の評価の手順に従って明らかにする予定です。スーパーキャパシタの製造には、PKC/MO ハイブリッド複合材料に基づくシンプルな全固体デバイスアーキテクチャが採用されます。サイクリック ボルタンメトリー、定電流充放電、電気化学インピーダンス分光法などを通じてデバイスの電気化学的性能を分析して、アプリケーションにとって最高のパフォーマンスを実現します。材料の柔軟性は、外部曲げによる電気化学的性能の変化を確認するために、デバイスの曲げ試験も行う予定です。より優れた性能を有するPKC/MOハイブリッド複合電極の開発を実施する予定です。今後のプロジェクトの実施について、同様に主任研究員がプロジェクト全体を担当し、研究の構想と実行を行います。材料の電気性能と電気化学性能の分析については、共同研究者である吉田教授が実施される予定です。
|
次年度使用額が生じた理由 |
本研究では、PKC/MO混合物電極材料とデバイスの作製、その後の表面処理、更に微細構造分析や性能測定や曲げ実験等に、原材料のPVDF、炭酸カリウム、炭酸水素カリウム、及び遷移金属酸化物/水酸化物/炭酸物などを含む試薬やガラス器具や基板材料及び他の分析消耗品が必要である。共同研究者の吉田教授は電気化学インピーダンス分光法などの材料の電気性能と電気化学性能に関する分析実験で、今後の実験の消耗品も必要である。次年度に予算を繰越す原因は主に以下の通りです。まず、2023年3月に請求のあった一編の論文(ACS Omega)のオープンアクセス掲載料は未計上であり、またラマン分析実験では研究室の同僚が備えた消耗品を使用したが、使用した備品がこの科研費で買われたものではないので、返却するためのお金が必要です。更に新型コロナの影響により、2022年度に予定していた国外への研究調査打合せや国際会議の参加が実施出来なかった。今後、PKC/MO混合物デバイスの作製と評価に関する研究調査打合せと成果発表の為、研究者の国内外会議への参加費および旅費を計上している。謝金は大学院学生の実験補助費用として計上している。各種実験の遂行上、各年の構造分析および電気試験や電気化学性能測定の実験費用を計上している。
|