高齢社会の現在、全身の筋力低下(サルコペニア)は重要課題である。運動はサルコペニアの予防作用を有しており、運動の骨格筋への作用機構を分子レベルで 解明することは新しいサルコペニアの予防・治療薬の開発につながるため、非常に有意義である。運動は骨格筋の遺伝子発現を変化させるが、運動刺激を骨格筋 の遺伝子の発現変化へと変換する分子機構には不明な点が多い。そこで、本研究では、運動による転写制御の分子機構を解明する解明することを目的とした。運 動により誘導されるシグナルを網羅的に解析するために、運動時の骨格筋の核抽出タンパク質におけるリン酸化プロテオミクス解析を行なった。その結果、リン酸化シグナルを受けるタンパク質としてエピゲノム修飾酵素Phf2(PHD Finger Protein 2)を同定した。PHF2はヒストン3の9番目のリジン残基のメチル基 (H3K9me2)を外す活性を持つエピゲノム修飾酵素であり、H3K9me2は遺伝子の転写を抑制するエピゲノム修飾であるため、PHF2は遺伝子の活性化に関わると予想される。PHF2の機能を解明するために、Phf2遺伝子の欠損したC2C12細胞に電気刺激装置(EPS)を用いたin vitroの運動モデルを用いて、遺伝子発現に与える変化 を解析したところ、EPSを用いると、野生型のC2C12細胞ではMyh2の遺伝子発現が誘導されたが、Phf2 KO C2C12細胞ではEPSによるMyh2遺伝子の発現上昇が起こらないことが明らかとなった。これらの結果から、PHF2が運動による骨格筋の遅筋化を制御するエピゲノム修飾酵素であることが示唆された。続いて、Phf2の生理機能を解明するために、骨格筋特異的なPhf2欠損マウスを作出した。まずはPhf2のin vitroの研究成果をPLOS ONE誌に発表した。
|