• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

複雑化データの情報抽出のための次元・変数縮約と同時推定及び計算環境の研究

研究課題

研究課題/領域番号 21K11799
研究機関岡山理科大学

研究代表者

森 裕一  岡山理科大学, 経営学部, 教授 (80230085)

研究分担者 黒田 正博  岡山理科大学, 経営学部, 教授 (90279042)
飯塚 誠也  岡山大学, 全学教育・学生支援機構, 教授 (60322236)
研究期間 (年度) 2021-04-01 – 2024-03-31
キーワード数量化 / カテゴリカルデータ / クラスタリング / 変数選択 / 加速化 / 主成分分析
研究実績の概要

本研究では、マーケティングや社会心理学の分野を想定し、(i)情報損失を最小限に抑えた大規模さの軽減、(ii)縮約した情報や複雑性の関係の効率的な把握、(iii)尺度混在データの処理とテキストデータの処理を含む分析手順の提供、(iv)対話的なインタフェースの提供、(v)計算の効率化を順に実現していくことを目的としており、本年度は、それぞれについて取り組んだ。
(i)~(iii)については、昨年度に引き続き、テストや調査問題において無駄な項目を削除することで複雑さを軽減することに取り組んだ。特に、尺度混在データに焦点をあて、カテゴリカルデータを項目反応理論や非計量主成分分析で数量化して、カテゴリカルデータを量的に扱える手法を提案するとともに、項目反応理論で導かれる潜在特性値による変数の削減手順の開発と拡張主成分分析をカテゴリカルデータに応用する非計量拡張主成分分析の性能評価を行った。いずれも提案手法を実データに利用する場合の一般手順を示すことができた。また、(iii)の後半のテキストデータについては、テキストマイニングの結果から得られる情報をさらに分析する方法の可能性を検討した。(iv)については、R上で動く環境の1つであるShinyを利用して、対話的インタフェースの構築を試みた。(v)については、vectorε法による計算の加速化の効果をより精密に評価するため、ファジーc平均法での数値実験を行い、パラメータ(=データの様相)の違いによる加速化の性質を明らかにした。これらの成果については、日本計算機統計学会のシンポジウム、国際計算機統計協会のアジア地区の大会などで発表した。また、9月に、シンガポールとドイツの研究者を招き、大規模・複雑化データの扱いに関する研究集会を岡山と京都で開き、計算方法や効率化について議論した。

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

【研究実績の概要】で述べた5つの目的は、すべて着手できているが、データ収集を控えたことで、構造方程式モデルと部分的最小二乗法での質的データの検討が十分に行えていないこと、出張等も同様に控えたため、海外を含めた研究協力者との研究打合せが十分に行えなかったことが、やや遅れている理由である。いずれも次年度の計画に入れることで問題はなく、本年度行った項目反応理論や拡張主成分分析を活用した変数選択手法や加速化については十分な成果が得られている。

今後の研究の推進方策

(i)~(iii)は引き続き継続する。特に、(i)では、構造方程式モデルと部分的最小二乗法に基づく手法の整理と非構造化データ(テキストデータ)の構造化の検討、(ii)では、Reduced k平均法を中心とした次元縮約と他の手法との同時推定手法の開発と、(iii)では、各種の多変量手法への応用と汎化に取りかかる。これらの進展に合わせ、それぞれの計算における(iv)のインタフェースの構築と(v)の加速化アルゴリズムを開発するとともに、各手法の評価を実データを基に行い、計画している成果をめざす。

次年度使用額が生じた理由

学会参加を予定していた国際会議の1つが完全オンライン開催、他はハイブリッド開催であったが渡航を控えたこと、年度前半のハイブリッド開催の国内会議にもオンラインで参加したため、その旅費の支出がなかったことによるものである。研究は一部遅延があるものの計画通りに進めることができていることから、次年度に、研究打合せと研究成果発表を積極的に行うことで、繰り越し分を有効に使う予定である。

  • 研究成果

    (5件)

すべて 2023 2022

すべて 雑誌論文 (2件) (うち査読あり 2件、 オープンアクセス 2件) 学会発表 (2件) (うち国際学会 1件、 招待講演 1件) 学会・シンポジウム開催 (1件)

  • [雑誌論文] ビッグファイブパーソナリティとデザイン選択の関連性について2023

    • 著者名/発表者名
      千足南々子・森 裕一
    • 雑誌名

      経営とデータサイエンス

      巻: 5 ページ: 125-135

    • 査読あり / オープンアクセス
  • [雑誌論文] テキストマイニングによる傾向・様相の分析2023

    • 著者名/発表者名
      稲田 愛・森 裕一
    • 雑誌名

      経営とデータサイエンス

      巻: 5 ページ: 41-53

    • 査読あり / オープンアクセス
  • [学会発表] Acceleration of Computation in Fuzzy Clustering2022

    • 著者名/発表者名
      Mori,Y., Akaki,T., Kuroda, M.
    • 学会等名
      The IASC-ARS Interim Conference 2022
    • 国際学会 / 招待講演
  • [学会発表] 質的データの項目精選-項目反応理論を利用した項目選択の検討-2022

    • 著者名/発表者名
      片山浩子,森 裕一
    • 学会等名
      日本計算機統計学会第36回シンポジウム
  • [学会・シンポジウム開催] 岡山理科大学マネジメント学会 第9回研究会「Deep learning and Computational aspects」2022

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi