• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data

研究課題

研究課題/領域番号 21K12034
研究機関会津大学

研究代表者

Rage Uday・Kiran  会津大学, コンピュータ理工学部, 准教授 (20874324)

研究分担者 是津 耕司  国立研究開発法人情報通信研究機構, ユニバーサルコミュニケーション研究所統合ビッグデータ研究センター, 研究センター長 (40415857)
研究期間 (年度) 2021-04-01 – 2025-03-31
キーワードBig data / high utility patterns / spatial information / data mining
研究実績の概要

High utility itemset mining is an important knowledge discovery in data mining. Exicisting studies ignored the spatial information of the items in the database and tried to find hidden patterns. We have observed that ignoring the spatial information results either in missing useful information or generating suprious information that is not useful to the experts. In this year, we have tested our cliam, which is important to capture the spatial information of the items to find patterns that have high value. The work was published in Applied Intelligence Journal.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We were successful in downloading the air pollution data of various sensors in Japan, USA, and other countries. We were able to test the distribution of characteritics of the data. We found that existing high utility itemset mining algorithms were inadequate to find spatially interesting patterns as they ignored the spatial information. We proposed a new model and an efficient algorithm to discover spatially interesting patterns having high value. Our work also published in Applied Intelligence journal.

今後の研究の推進方策

1. This year we will model the air pollution has uncertain data generated by the sensors and study the current limitations. Next, we will analyze the results and make claim, followed by introducing a new model and algorithm to find spatially interesting patterns in uncertain data.

2. We will also study how to model air pollution as fuzzy dataset to extract useful information

次年度使用額が生じた理由

We will write necessary programs (ETL-techniques) to analyze air pollution data and make the decision on importance of model the air pollution data as uncertain data and/or fuzzy data.We will develop models to capture the hidden information uncertain/fuzzy data. We will investigate algorithms to extract information.
This year we will using the Kakenhi grant on development of ETL-techniques (Miscellaneous) and article processing fees.

  • 研究成果

    (4件)

すべて 2023 2022

すべて 雑誌論文 (1件) (うち国際共著 1件) 学会発表 (3件) (うち国際学会 3件)

  • [雑誌論文] HDSHUI-miner: a novel algorithm for discovering spatial high-utility itemsets in high-dimensional spatiotemporal databases2023

    • 著者名/発表者名
      Uday Kiran Rage、Veena Pamalla、Ravikumar Penugonda、Venus Vikranth Raj Bathala、Dao Minh-Son、Zettsu Koji、Bommisetti Sai Chithra
    • 雑誌名

      Applied Intelligence

      巻: 53 ページ: 8536~8561

    • DOI

      10.1007/s10489-022-04436-w

    • 国際共著
  • [学会発表] Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases2022

    • 著者名/発表者名
      Penugonda Ravikumar, Bathala Venus Vikranth Raj, Palla Likhitha, Rage Uday Kiran, Yutaka Watanobe, Sadanori Ito, Koji Zettsu, Masashi Toyoda:
    • 学会等名
      ACIIDS
    • 国際学会
  • [学会発表] Discovering Fuzzy Geo-referenced Periodic-Frequent Patterns in Geo-referenced Time Series Databases2022

    • 著者名/発表者名
      Pamalla Veena, Penugonda Ravikumar, Kundai Kwangwari, R. Uday Kiran, Kazuo Goda, Yutaka Watanobe, Koji Zettsu
    • 学会等名
      IEEE FUZZ
    • 国際学会
  • [学会発表] UPFP-growth++: An Efficient Algorithm to Find Periodic-Frequent Patterns in Uncertain Temporal Databases.2022

    • 著者名/発表者名
      Palla Likhitha, Rage Veena, Rage Uday Kiran, Koji Zettsu, Masashi Toyoda, Philippe Fournier-Viger:
    • 学会等名
      ICONIP
    • 国際学会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi