• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

Generalizations of the double shuffle relations for multiple zeta values and the connections to modular forms

研究課題

研究課題/領域番号 21K13771
研究機関名古屋大学

研究代表者

BACHMANN Henrik  名古屋大学, 多元数理科学研究科(国際), G30特任准教授 (20813372)

研究期間 (年度) 2021-04-01 – 2023-03-31
キーワードmultiple zeta values / Eisenstein series / modular forms
研究実績の概要

In this research project a generalization of the classical double shuffle relations of multiple zeta values were introduced and studied. This new set of equations are motivated by multiple Eisenstein series introduced by Gangl-Kaneko-Zagier. It is defined by using the notion of bimoulds and they are given by those bimoulds which are symmetril and swap invariant. Coefficients of bimoulds satisfying this property are called formal multiple Eisenstein series. We show (j.w. A. Burmester) that the space of formal multiple Eisenstein series has a realization given by an algebra homomorphism into the space of formal q-series with rational coefficients. In depth one these are exactly Eisenstein series and their derivatives. This gives a natural bridge between the theory of modular forms and multiple zeta values. In another project (j.w. J.W. van Ittersum) we show that the space of formal multiple Eisenstein series is an sl2-algebra. This generalized the sl2-modular structure of quasimodular forms and gives new insights into the study of multiple Eisenstein series and q-analogues of multiple zeta values. Another result of this study is a new notion of formal (quasi)modular forms equipped with a formal version of the natural derivation qd/dq.

  • 研究成果

    (1件)

すべて 2022

すべて 学会発表 (1件) (うち招待講演 1件)

  • [学会発表] The zoo of multiple Eisenstein series2022

    • 著者名/発表者名
      Henrik Bachmann
    • 学会等名
      多重ゼータ値の諸相
    • 招待講演

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi