• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

リッチ曲率を用いた動的なハイパーグラフ-クラスタリング-アルゴリズムの開拓

研究課題

研究課題/領域番号 21K13800
研究機関島根大学

研究代表者

山田 大貴  島根大学, 学術研究院理工学系, 助教 (00847270)

研究期間 (年度) 2021-04-01 – 2025-03-31
キーワードリッチ曲率 / シャープレイ値 / 単体的複体
研究実績の概要

当該年度は,ハイパーグラフと対応関係の持つ単体的複体上に粗リッチ曲率の概念を拡張することに成功した.粗リッチ曲率はランダムウォークを構成することで定義され,近年はハイパーグラフ上に拡張されている.しかし,ハイパーグラフと単体的複体は対応関係を持っているとはいえ,構成されたハイパーグラフ上のランダムウォークは次元の情報を含まないため,単体的複体上のランダムウォークとして採用することは難しかった.そこで,次元の情報を含んだ新たなランダムウォークを単体的複体上に構成することで,単体的複体上の粗リッチ曲率を適切に定義した.本研究成果は論文として国際雑誌に掲載された.
また,昨年度,協力ゲーム理論におけるシャープレイ値が本研究の目標達成に重要な役割を果たすことを明らかにし,シャープレイ値とリッチ曲率との関係を明らかにすることを課題として挙げていた.そこで,当該年度は,積極的に他分野の研究集会に参加し,シャープレイ値の性質に関する知識を深めた.その結果,各辺上のシャープレイ値を定義するよりも,シャープレイ値を構成する特性関数を辺上に定義した方がよりグラフ構造を反映できることが分かり,離散曲率の1つであるFormanリッチ曲率との関係性を明らかにした.シャープレイ値は機械学習にも応用されているため,本研究目的であるグラフアルゴリズムの構築にも使えるのではないかと期待する.なお,本研究成果は研究集会で公表しており,現在投稿中である.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

研究実施計画に沿った研究成果を挙げただけでなく,昨年度の課題も解決できたため.

今後の研究の推進方策

これまでの研究で,「リッチ曲率の拡張」や「リッチ曲率と既存アルゴリズムの関係」は明らかにできたため,既存のアルゴリズムをリッチ曲率を用いた形に改良させるかリッチ曲率を用いた新たなグラフアルゴリズムを開拓することを目標とする.また,本研究課題は実践的な応用も視野に入れているため,企業や専門外の研究者と積極的に議論を行い,実際の課題解決に貢献できるのか実データを用いた検証も行う.

次年度使用額が生じた理由

数理経済学関連の論文を投稿するための費用として計上していたが,共同研究者との日程調整がうまくいかず論文の執筆作業に時間がかかったために,次年度使用額が生じた.引き続き打ち合わせを行い,当該論文を完成させるために使用する予定である.

  • 研究成果

    (2件)

すべて 2023

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (1件) (うち招待講演 1件)

  • [雑誌論文] The Ricci Curvature on Simplicial Complexes2023

    • 著者名/発表者名
      Yamada Taiki
    • 雑誌名

      Theory and Applications of Graphs

      巻: 10 ページ: 1~18

    • DOI

      10.20429/tag.2023.10205

    • 査読あり / オープンアクセス
  • [学会発表] New allocation rule related to Forman curvature of directed hypergraphs2023

    • 著者名/発表者名
      Taiki Yamada
    • 学会等名
      幾何学シンポジウム
    • 招待講演

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi