研究課題/領域番号 |
21K14260
|
研究機関 | 東京大学 |
研究代表者 |
Pang Yanbo 東京大学, 空間情報科学研究センター, 特任助教 (60870178)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
キーワード | 人の流れ / エージェントシミュレーション / 深層学習 / 人間参加型機械学習 |
研究実績の概要 |
本研究では、都市領域での人間の移動と日常活動の理解を深め、高精度な人流データの作成を目指しました。そのために、深層学習フレームワークとエージェントモデルを組み合わせ、人間の移動の再現性と信頼性を向上させるための新たなアプローチを提案しました。その実施内容は以下の2つであります。 1)目的地選択に焦点を当てた新しい深層学習フレームワークを提案し、全国規模の人間の移動を人口レベルで再構築しました。我々は、旅行者の人口統計、移動特性、旅行意図、場所の文脈情報を扱うための新たな埋め込みメカニズムを設計しました。その結果、訓練済みのモデルは、異なる訓練データを使用した複数の都市地域において、他のベースラインアプローチと比較して、人間の移動をより精緻に再現できることがわかりました。 2)都市内のグリッド上で有意義なOD情報を学習するためのグラフニューラルネットワーク手法を提案しました。我々は、いくつかのオープンソースデータセットから地域の多様な特性を収集し、それらをグリッド信号として使用しました。その結果、提案したモデルは、ODグラフからより正確な潜在的地形情報を抽出し、妥当なグリッド埋め込みを生成できることがわかりました。これらの表現は他の下流のタスクにも適用できます。 以上の成果により、本研究はスマートシティとデジタルツインの進展に対応し、都市の複雑なレイアウトや機能の違いを考慮に入れた人間の移動の高精度な予測と再現を可能にしました。これらの成果は、都市計画や交通システム設計における重要な基礎となります。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
本年度の研究では、人口レベルでの全国規模の人間の移動を再現する新たな深層学習フレームワークを提案し、都市内のグリッド上での有意義なOD情報を学習する深層モデルを開発しました。これにより、人流予測の精度が向上しました。しかし、旅行者情報の取り扱いと都市間の違いを反映したモデル訓練には改良の余地があります。次年度はこれらの課題に取り組み、都市計画や交通システム設計に役立つより高精度な人流データの作成を目指します。
|
今後の研究の推進方策 |
既存の評価基準に人間の判断を加え、個人レベルの再現性と合理性を評価基準に融合する。また、シミュレーションと人間のフィードバックによる、回を重ねるごとにシミュレーションの結果を向上させ、非集計な携帯電話データを使う場合と同等の精度を達成することを目標とする。 最終的に、より高精度な人流データを生成し、それを都市計画や交通システム設計に活用することを目指します。そのために、実世界の都市計画や交通システム設計の課題に対して、我々のモデルがどの程度対応できるかを評価します。
|
次年度使用額が生じた理由 |
1. 学会参加費: 当研究チームは新しい研究成果を国内外の学会で発表し、研究者との意見交換や共同研究の機会を追求します。このためには、学会参加費(登録費、旅費)が必要です。また、新たな研究アイデアや手法を学ぶためにも学会への参加は重要です。2. データ購入: 当研究は人間の移動を予測するために、大量の移動データが必要です。公開されているデータセットだけでは不足する場合があり、必要に応じてデータを購入する予定です。3. 計算機購入: 当研究のモデル訓練と評価は大量の計算リソースを必要とします。既存の計算リソースが不足する場合や、新たな技術が導入された場合には、新たな計算機を購入する可能性があります。4. 英文校正: 研究成果を国際的な学会で発表したり、国際的な学術雑誌に投稿するためには、英文の質が非常に重要です。そのため、論文の英文校正費用を予算に組み入れています。 これらのコストは、研究活動を円滑に進め、研究成果を広く共有するために不可欠です。予算は適切に計画し、効果的に使用することで、最大限の研究成果を得ることを目指します。
|