• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

Development and application of robust machine-learning interatomic potentials for the computational design of solid electrolytes for all-solid-state batteries

研究課題

研究課題/領域番号 21K14729
研究機関国立研究開発法人物質・材料研究機構

研究代表者

JALEM Randy  国立研究開発法人物質・材料研究機構, エネルギー・環境材料研究拠点, 主任研究員 (20767553)

研究期間 (年度) 2021-04-01 – 2024-03-31
キーワードmachine learning / solid electrolytes / solid-state batteries
研究実績の概要

For the goal of developing robust machine-learning interatomic potentials for the computational design of solid electrolytes for all-solid-state batteries, the following research outputs were thus far achieved:
1. Development of high-throughput DFT and ab initio molecular dynamics calculation workflows for training data generation.
2. Data generation of optimized crystal structures, strained structures, and grain boundary structures by high-throughput DFT and ab initio molecular dynamics (crystal structure coordinates, total energies, and forces were successfully collected for the Na-Sb-S chemical system, Li-rich inverse perovskites, and Li-rich garnet-type oxides).
3. Development of data processing tools for actual passive learning tasks of machine-learning potential parameter sets.
4. Publications of results to peer-reviewed journals for theoretically proposed promising solid electrolyte systems that were analyzed/studied by DFT method which also forms part of the generated training dataset for machine-learning potential fitting.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The research targets were achieved due to prior preparations made by the proponent in the previous year.

今後の研究の推進方策

The following are the future tasks:
1. Improvement of training dataset diversity for fitting tasks of machine learning potentials, such as inclusion of sub-system compounds in a target chemical space to capture more atomic environment variety(e.g., in the Na-Sb-S, generate training data in the Na-Sb, Na-S, Sb-S, Na, Sb and S chemical system).
2. Carrying out of actual fitting tasks for machine-learning potential parameter sets using DFT-generated training dataset (passive learning).
3. Accuracy/performance check/improvement of fitted machine-learning potentials in terms of energies, forces.

  • 研究成果

    (10件)

すべて 2022 2021

すべて 雑誌論文 (3件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 2件) 学会発表 (7件) (うち国際学会 4件)

  • [雑誌論文] Theoretical study on stability and ion transport property with halide doping of Na3SbS4 electrolyte for all-solid-state batteries2022

    • 著者名/発表者名
      Jalem Randy、Gao Bo、Tian Hong-Kang、Tateyama Yoshitaka
    • 雑誌名

      Journal of Materials Chemistry A

      巻: 10 ページ: 2235~2248

    • DOI

      10.1039/D1TA07292G

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Revealing Atomic‐Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li7La3Zr2O12 Solid Electrolyte2021

    • 著者名/発表者名
      Gao Bo、Jalem Randy、Tian Hong‐Kang、Tateyama Yoshitaka
    • 雑誌名

      Advanced Energy Materials

      巻: 12 ページ: 2102151~2102151

    • DOI

      10.1002/aenm.202102151

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] First-Principles DFT Study on Inverse Ruddlesden-Popper Tetragonal Compounds as Solid Electrolytes for All-Solid-State Li+-Ion Batteries2021

    • 著者名/発表者名
      Jalem Randy、Tateyama Yoshitaka、Takada Kazunori、Nakayama Masanobu
    • 雑誌名

      Chemistry of Materials

      巻: 33 ページ: 5859~5871

    • DOI

      10.1021/acs.chemmater.1c00124

  • [学会発表] Combining density functional theory approaches and Bayesian optimization for the large-scale efficient search of novel all-solid-state battery electrolytes2021

    • 著者名/発表者名
      Randy Jalem
    • 学会等名
      The International Chemical Congress of Pacific Basin Societies 2021 (Pacifichem2021)
    • 国際学会
  • [学会発表] Exploration of Li-Rich Inorganic Compounds with Inverse Ruddlesden-Popper-Type Structure by First-Principles DFT Calculations for Solid Electrolyte Application in All-Solid-State Batteries2021

    • 著者名/発表者名
      Randy Jalem, Yoshitaka Tateyama, Kazunori Takada, Masanobu Nakayama
    • 学会等名
      2021 MRS Fall Meeting & Exhibit
    • 国際学会
  • [学会発表] First-Principles DFT-based Computational Design of Novel Solid Electrolytes with Inverse Ruddlesden-Popper Tetragonal Structure for All-Solid-State Batteries2021

    • 著者名/発表者名
      Randy Jalem, Yoshitaka Tateyama, Kazunori Takada, Masanobu Nakayama
    • 学会等名
      The 62nd Battery Symposium in Japan
  • [学会発表] DFT-Based Computational Design Of Inverse Ruddlesden-Popper-Type Solid Electrolytes For All-Solid-State Lithium Ion Battery Application2021

    • 著者名/発表者名
      Randy Jalem, Yoshitaka Tateyama, Kazunori Takada, Masanobu Nakayama
    • 学会等名
      The International Union of Materials Research Societies - International Conference in Asia 2021 (IUMRS-ICA 2021)
    • 国際学会
  • [学会発表] First-principles DFT study on the Na+ Superionic Conductivity in Cation-Doped Na3SbS4 Solid Electrolytes for All-Solid-State Batteries2021

    • 著者名/発表者名
      Randy Jalem, Yoshitaka Tateyama
    • 学会等名
      72nd Annual Meeting of the International Society of Electrochemistry
    • 国際学会
  • [学会発表] My Education, Works and Life Experiences in Japan as a Computational Researcher2021

    • 著者名/発表者名
      Randy Jalem
    • 学会等名
      日本化学会秋季事業 第11回CSJ化学フェスタ2021 (11th CSJ Chemistry Festa)
  • [学会発表] Understanding the electrochemical stability and ion transport property of ceramic electrolytes in all-solid-state batteries from atomic-scale modeling2021

    • 著者名/発表者名
      Randy Jalem
    • 学会等名
      8th Ceramic Engineering Week, Mindanao State University - Iligan Institute of Technology, Philippines

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi