医用画像と病理所見とをRadiomics研究および機械学習に用いるため、後ろ向き研究の計画書を立案し、「画像特徴量を用いた病理学的悪性度予測とその放射線治療計画への応用」として院内の倫理委員会の承認を得た(研究番号R3671)。 前年度は、前立腺癌への根治的放射線治療が行われた患者を対象とし、その針生検の所見とMRI画像とを用いてRadiomics研究を行った。今年度は放射線治療計画に応用するため、機械学習を用いてMRI画像上に前立腺の描出および前立腺内の腫瘍の描出を行うことを目標とした。しかし機械学習モデルでは病理学的悪性度の高い部分の同定に難渋した。これは針生検の所見から病理学的悪性度の高い部分をMRI上で同定する際の精度が低いことが問題と考えた。 そこで、前立腺全体の病理学的な存在診断が付いている、前立腺全摘術の症例を対象として改めてモデルを作成することとした。2000年以降に前立腺全摘後の放射線治療が行われた85例をデータベースから抽出し、それらの患者の術前のMRI上に病理診断をもとに悪性度の高い部分を設定し、Radiomics研究を行う方針とした。しかし前立腺全摘が行われた多くの症例で、術前にMRIが撮像されておらず、症例数の確保が困難であった。 そのためやはりもともとの方針の通り、根治的放射線治療症例のMRIを用いて機械学習にて病変部位を同定することとしている。 また上記に付随した研究として、放射線治療前のCT画像を用いた放射線治療計画の可能性についても検討した。前立腺癌の放射線治療を行った10症例を対象に治療計画を行い、治療標的である前立腺の偏移や変形を加味した放射線の投与線量を推定したところ、実際の治療に用いた治療計画と比較しほとんどの指標で有意な差を認めなかった。その内容を、2022年4月の第81回日本医学放射線学会総会にて口演発表し、現在JJR誌に投稿中である。
|