• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

New ubiquitous computing system uniting chaos theory and data science for sleep apnea hypopnea syndrome (SAHS) screening with wearable devices

研究課題

研究課題/領域番号 21K17670
研究機関京都先端科学大学

研究代表者

梁 滋路  京都先端科学大学, 工学部, 講師 (10782807)

研究期間 (年度) 2021-04-01 – 2025-03-31
キーワードsleep apnea / SpO2 / ensemble learning / machine learning
研究実績の概要

The achievement this year revolved around enhancing the performance of SpO2-based sleep apnea screening models. A new feature set was constructed leveraging machine learning and chaos analysis techniques. Probabilistic ensemble approach was applied to construct apnea screening models at three cutoff points: 5, 15, 30 events/h. These models underwent thorough evaluation using multiple performance metrics and rigorous statistical analysis. The impact of decision boundaries and data granularity were systematically explored, marking the first comprehensive investigation of its kind in machine learning based sleep apnea screening. The models outperform existing models by a substantial margin. The findings have led to several publications in international journals and conferences, indexed in Web of Science and Scopus.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The project progressed as planned during this fiscal year. A new feature set was constructed by combining classic machine learning and chaos analysis techniques. Utilizing this feature set, probabilistic ensemble models were constructed using three tuned and calibrated base classifiers: SVM, logistic regression, and light gradient boosting machine. Model performance was evaluated using multiple measures, considering varying decision boundaries and data granularity. The developed models demonstrated superior performance across all three AHI cutoffs compared to existing sleep apnea screening models. The new approach allows for elegant integration of the pre-test sleep apnea prevalence into model tuning, thereby enhancing its clinical relevance and applicability in real-world scenarios.

今後の研究の推進方策

We have identified two key directions for future research. Firstly, we plan to explore the effectiveness of an original feature engineering method, which involves multiscale feature extraction. This approach aims to capture more nuanced patterns and relationships within the data, potentially enhancing the performance of our sleep apnea screening models. Secondly, we intend to conduct a comprehensive assessment of the external validity and generalizability of the developed sleep apnea screening models. This evaluation will involve testing the models on other datasets to ensure their robustness and applicability across different contexts. By addressing these areas in future work, we aim to further advance the effectiveness and reliability of our models in real-world settings.

次年度使用額が生じた理由

The review cycle of our journal submission took longer than anticipated, resulting in a delay in payment of the planned publication fee until the next fiscal year.

  • 研究成果

    (20件)

すべて 2023 その他

すべて 国際共同研究 (1件) 雑誌論文 (9件) (うち国際共著 2件、 査読あり 7件、 オープンアクセス 4件) 学会発表 (8件) (うち国際学会 4件) 備考 (2件)

  • [国際共同研究] University of California, Santa Cruz(米国)

    • 国名
      米国
    • 外国機関名
      University of California, Santa Cruz
  • [雑誌論文] Novel method combining multiscale attention entropy of overnight blood oxygen level and machine learning for easy sleep apnea screening2023

    • 著者名/発表者名
      Liang Z
    • 雑誌名

      DIGITAL HEALTH

      巻: 9 ページ: 1-19

    • DOI

      10.1177/20552076231211550

    • 査読あり / オープンアクセス
  • [雑誌論文] Knowledge Discovery in Ubiquitous and Personal Sleep Tracking: Scoping Review2023

    • 著者名/発表者名
      Hoang NH, Liang Z
    • 雑誌名

      JMIR Mhealth Uhealth

      巻: 11 ページ: 1-17

    • DOI

      10.2196/42750

    • 査読あり
  • [雑誌論文] What’s keeping teens up at night? Reflecting on sleep and technology habits with teens2023

    • 著者名/発表者名
      Ploderer B, Rodgers S, Liang Z
    • 雑誌名

      Personal and Ubiquitous Computing

      巻: 27 ページ: 249-270

    • DOI

      10.1007/s00779-021-01661-x

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Developing and Validating Ensemble Classifiers for At-Home Sleep Apnea Screening2023

    • 著者名/発表者名
      Liang Z
    • 雑誌名

      Engineering Proceedings

      巻: 58 ページ: 1-4

    • DOI

      10.3390/ecsa-10-16184

    • オープンアクセス
  • [雑誌論文] Developing a Cross-Platform Application for Integrating Real-time Time-series Data from Multiple Wearable Sensors2023

    • 著者名/発表者名
      Sirithummarak P, Liang Z
    • 雑誌名

      Engineering Proceedings

      巻: 58 ページ: 1-4

    • DOI

      10.3390/ecsa-10-16185

    • オープンアクセス
  • [雑誌論文] Effect of Decision Boundary for Logistic Regression Classifiers on Sleep Apnea Screening Accuracy with Wearable SpO2 Data2023

    • 著者名/発表者名
      Liang Z
    • 雑誌名

      In Proceedings of the14th International Conference on Mobile Computing and Ubiquitous Networking (ICMU 2023)

      巻: 0 ページ: 1-4

    • DOI

      10.23919/ICMU58504.2023.10412217

    • 査読あり
  • [雑誌論文] Multiscale Attention Entropy (MSAE) of Overnight Pulse Oximetry for Assessing Sleep Apnea2023

    • 著者名/発表者名
      Liang Z
    • 雑誌名

      In Proceedings of the 7th International Conference on Medical and Health Informatics (ICMHI '23)

      巻: 0 ページ: 77-80

    • DOI

      10.1145/3608298.3608314

    • 査読あり
  • [雑誌論文] Developing Sleep Apnea Screening Models Compatible with Low-Resolution SpO2 Data2023

    • 著者名/発表者名
      Liang Z
    • 雑誌名

      In Proceedings of 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE 2023)

      巻: 0 ページ: 330-331

    • DOI

      10.1109/GCCE59613.2023.10315249

    • 査読あり
  • [雑誌論文] Mining Contrast Rules in a Sleep Apnea Dataset2023

    • 著者名/発表者名
      Jayen H, Lukovnikova A, Nhung HH, Liang Z
    • 雑誌名

      In Proceedings of 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE 2023)

      巻: 0 ページ: 1057-1060

    • DOI

      10.1109/GCCE59613.2023.10315646

    • 査読あり / 国際共著
  • [学会発表] FunAlarm: Gamification-Based Smartphone Alarm Application for Reducing Wakeup Delay2023

    • 著者名/発表者名
      Liang Z, Yahya KN, Setiawan EN, Kasan JA, Firdauzi MO
    • 学会等名
      The 4th Sleep Congress of Asian Society of Sleep (ASSM 2023)
    • 国際学会
  • [学会発表] Shallow and Deep Learning Models for Detecting Apnea Events in Stroke Patients2023

    • 著者名/発表者名
      Hoang HN, Liang Z
    • 学会等名
      The 4th Sleep Congress of Asian Society of Sleep (ASSM 2023)
    • 国際学会
  • [学会発表] A Pilot Study into the Feasibility of Utilizing Contagious Yawning to improve Sleep Quality2023

    • 著者名/発表者名
      Khotchasing K, Liang Z
    • 学会等名
      The 4th Sleep Congress of Asian Society of Sleep (ASSM 2023)
    • 国際学会
  • [学会発表] Investigating Subjective-Objective Sleep Discrepancy with Consumer Sleep Tracking and Wearable fNIRS Technologies2023

    • 著者名/発表者名
      Liang Z, Saskovets M
    • 学会等名
      The 2023 International Artinis (f)NIRS Symposium
    • 国際学会
  • [学会発表] Machine Learning based Sleep Apnea Screening with Overnight SpO2 Recordings2023

    • 著者名/発表者名
      Liang Z
    • 学会等名
      The 48th Annual Meeting of Japanese Society of Sleep Research (JSSR 2023)
  • [学会発表] Beyond Statistical Analysis: Identifying Meaningful Patterns in Sleep Apnea Dataset using Contrast Set Mining2023

    • 著者名/発表者名
      Nhung HH, Jayen H, Lukovnikova A, Liang Z
    • 学会等名
      The 48th Annual Meeting of Japanese Society of Sleep Research (JSSR 2023)
  • [学会発表] Design and Development of Gamification mHealth Application for Sleep Hygiene Intervention2023

    • 著者名/発表者名
      Khotchasing K, Nhung HH, Liang Z
    • 学会等名
      The 48th Annual Meeting of Japanese Society of Sleep Research (JSSR 2023)
  • [学会発表] Developing a Cross-Platform Application for Health Data Integration from Multiple Wearable Sensors2023

    • 著者名/発表者名
      Sirithummarak P, Liang Z
    • 学会等名
      IEICE Society Conference 2023
  • [備考] Lab Homepage

    • URL

      https://www.ubicomp-lab.org/

  • [備考] Personal Website

    • URL

      https://www.zilu-liang.net

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi