• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

Secure, Precise and Fast Sequential Pattern Mining with Learning Data Distribution

研究課題

研究課題/領域番号 21K17746
研究機関東京工業大学

研究代表者

Le Hieu・Hanh  東京工業大学, 情報理工学院, 助教 (60813996)

研究期間 (年度) 2021-04-01 – 2024-03-31
キーワードprivacy / data mining / differential privacy / recommendation
研究実績の概要

This study aims to present a method for eliminating the need for trust in sequential pattern mining (SPM) while preserving privacy and providing secure, precise, and fast sequential data analysis which carefully learns the data distribution.
The fundamental algorithms of sequential data analysis on sequential medical data without privacy-preserving have been studied this year. In detail, utilizing SPM with clustering, the research extracts and compares the clinical pathways from multiple hospitals and discovers the association rules used for specimen inspection recommendations.
These algorithms will be used as base methods for evaluating the effectiveness of the privacy-preserving SPM in the following years.

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

Due to the spread of COVID19 and the shortage of semiconductors, the preparation of medical data from multiple hospitals and the delivery of the server were delayed. Therefore, the evaluation of the proposed privacy-preserving analysis algorithm could not be performed on time.

今後の研究の推進方策

In the following year, as the experimental environment and the fundamental analyzing methods were already constructed, the privacy-preserving analysis will be evaluated. At the same time, a method to further reduce the mining time will be proposed and evaluated.

次年度使用額が生じた理由

Due to the spread of the COVID19 infection, it was not possible to make oeversea and domestic business trips. Therefore, the expenses for travel and conference participation fees were carried over to the next year.

  • 研究成果

    (4件)

すべて 2022 2021

すべて 学会発表 (4件) (うち国際学会 1件)

  • [学会発表] MERJ: Medical Entity-Relation Extraction System for Japanese Clinical Texts2022

    • 著者名/発表者名
      An Wang, Hieu Hanh Le, Ryosuke Matsuo, Tomoyoshi Yamazaki, Kenji Araki, Haruo Yokota
    • 学会等名
      The 14th Forum on Data Engineering and Information Management (DEIM 202)
  • [学会発表] シーケンシャルパターンマイニングに基づく多病院間の頻出治療パターンの比較2022

    • 著者名/発表者名
      Li Yuqing, Le Hieu Hanh, 松尾亮輔, 山崎友義, 荒木賢二, 横田治夫
    • 学会等名
      第14回データ工学と情報マネジメントに関するフォーラム予稿集
  • [学会発表] 医療データのシーケンス解析とその課題2022

    • 著者名/発表者名
      横田治夫, Le Hieu Hanh, 松尾亮輔, 山﨑友義, 荒木賢二
    • 学会等名
      第12回日本医療情報学会「医用人工知能研究会」人工知能学会「医用人工知能研究会」合同研究会
  • [学会発表] Sequential Pattern Mining of Large Combinable Items with Values for a Set-of-items Recommendation2021

    • 著者名/発表者名
      Hieu Hanh Le, Yutaka Horino, Tomoyoshi Yamazaki, Kenji Araki, Haruo Yokota
    • 学会等名
      The 34 IEEE International Symposium on Computer-based Medical Systems (CBMS 2021)
    • 国際学会

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi