• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

Low-complexity research for next-generation VVC standard and its neural network extension

研究課題

研究課題/領域番号 21K17770
研究機関早稲田大学

研究代表者

孫 鶴鳴  早稲田大学, 理工学術院, 次席研究員 (90835886)

研究期間 (年度) 2021-04-01 – 2023-03-31
キーワードVideo coding / VVC / Intra prediction / Transform
研究実績の概要

This research aims at reducing the complexity of the next-generation video compression standard Versatile Video Coding (VVC), from the aspect of both algorithm and architecture. For the algorithm, a fast intra prediction based on histogram of oriented gradient is proposed. When integrating in VVC test model, more than 50% encoding time can be saved with less than 3% coding efficiency loss. For the architecture, we propose a reconfigurable transform architecture which supports all the VVC transform types with square and rectangular sizes ranging from 4x4 to 32x32. The results show that we can reduce significant area and power consumption compared to the existing methods.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

This year, we focused on low-complexity methods of two important coding components in VVC which are intra prediction and transform. For the intra prediction, a fast algorithm is develeped. For the transform, a low-cost hardware is proposed. Both methods have been published in international conference. In addition, we have also explored deep learning technology to further improve the coding gain of VVC. By using the proposed deep learning-based in-loop filter, at most 9% coding gain can be achieved. The related results have been published in IEEE journal.

今後の研究の推進方策

There are two plans. First is to continue the low-complexity designs for each VVC components. We have focused on intra prediction and transform in the last year. We will focus on inter prediction, adaptive loop filter and entropy model within this year. For each component, both algorithm and architecture designs are expected. Second is to develop low-complexity neural network to improve the coding gain. Based on the proposed neural network last year, we plan to use network prune and quantization scheme to reduce the computational and memory cost of the neural network.

次年度使用額が生じた理由

Since there was no chance to attend the conference physically last year, the amount of budget for the traveling fee is remaining. For this remaining part, I plan to purchase a CPU server for the usage of runing VVC test model in this fiscal year. In addition, I plan to buy a GPU machine for training the neural network models.

  • 研究成果

    (8件)

すべて 2022 2021

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 1件) 学会発表 (6件) (うち国際学会 6件)

  • [雑誌論文] QA-Filter: A QP-Adaptive Convolutional Neural Network Filter for Video Coding2022

    • 著者名/発表者名
      Chao Liu, Heming Sun, Jiro Katto, Xiaoyang Zeng, Yibo Fan
    • 雑誌名

      IEEE Transactions on Image Processing

      巻: 31 ページ: 3032-3045

    • DOI

      10.1109/TIP.2022.3152627

    • 査読あり / 国際共著
  • [雑誌論文] Learned Image Compression With Separate Hyperprior Decoders2021

    • 著者名/発表者名
      Zhao Zan, Chao Liu, Heming Sun, Xiaoyang Zeng, Yibo Fan
    • 雑誌名

      IEEE Open Journal of Circuits and Systems

      巻: 2 ページ: 627-632

    • DOI

      10.1109/OJCAS.2021.3125354

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Learning in Compressed Domain for Faster Machine Vision Tasks2021

    • 著者名/発表者名
      Jinming Liu, Heming Sun, Jiro Katto
    • 学会等名
      IEEE International Conference on Visual Communications and Image Processing
    • 国際学会
  • [学会発表] A Hardware Architecture for Adaptive Loop Filter in VVC Decoder2021

    • 著者名/発表者名
      Xin Wang, Heming Sun, Jiro Katto, Yibo Fan
    • 学会等名
      IEEE International Conference on ASIC
    • 国際学会
  • [学会発表] Fast Object Detection in HEVC Intra Compressed Domain2021

    • 著者名/発表者名
      Liuhong Chen, Heming Sun, Jiro Katto, Xiaoyang Zeng, Yibo Fan
    • 学会等名
      European Signal Processing Conference
    • 国際学会
  • [学会発表] Learned Image Compression with Fixed-point Arithmetic2021

    • 著者名/発表者名
      Heming Sun, Lu Yu, Jiro Katto
    • 学会等名
      Picture Coding Symposium
    • 国際学会
  • [学会発表] Accelerating Convolutional Neural Network Inference Based on a Reconfigurable Sliced Systolic Array2021

    • 著者名/発表者名
      Yixuan Zeng, Heming Sun, Jiro Katto, Yibo Fan
    • 学会等名
      IEEE International Symposium on Circuits and Systems
    • 国際学会
  • [学会発表] Approximated Reconfigurable Transform Architecture for VVC2021

    • 著者名/発表者名
      Yixuan Zeng, Heming Sun, Jiro Katto, Yibo Fan
    • 学会等名
      IEEE International Symposium on Circuits and Systems
    • 国際学会

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi