研究課題/領域番号 |
21K18327
|
研究機関 | 九州工業大学 |
研究代表者 |
山西 芳裕 九州工業大学, 大学院情報工学研究院, 教授 (60437267)
|
研究分担者 |
鈴木 淳史 九州大学, 生体防御医学研究所, 教授 (30415195)
|
研究期間 (年度) |
2021-07-09 – 2024-03-31
|
キーワード | ダイレクトリプログラミング / 腫瘍化リスク / データ駆動 / 細胞直接変換 / AI |
研究実績の概要 |
iPS細胞を介さずに目的の臓器の細胞に直接変換するダイレクトリプログラミングが革新的な再生医療技術として注目されている。しかしながら、ダイレクトリプログラミングを誘導する因子セット(転写因子や低分子化合物など)を同定するのは極めて困難である。そこで本研究では、ダイレクトリプログラミングを誘導する転写因子や低分子化合物を予測する情報技術を構築する。 転写因子や低分子化合物に関する多階層オミックスデータや分子パスウェイデータを整備した。これらの様々なデータから、ダイレクトリプログラミングを誘導する低分子化合物を予測する機械学習の手法を開発した。通常の細胞の直接変換は、ウイルスを用いて必要な遺伝子を元細胞に導入するため、ウイルスに起因する発がんリスクなどの問題がある。そこで遺伝子導入の代わりに低分子化合物の添加による細胞変換を誘導する技術が切望されているが、実験的に低分子化合物を同定するのは時間や実験コストの面から極めて困難である。そこで、細胞の直接変換を誘導する低分子化合物を予測する最適化アルゴリズムを開発した。まず、細胞が変換する分子メカニズムに着目し、変換過程で重要な生物学的パスウェイを明らかにした。次いで、その生物学的パスウェイを制御する低分子化合物の最適な組み合わせを探索することによって、細胞の直接変換を誘導する低分子化合物の新たな組み合わせを予測する手法を確立した。開発手法を用いて、皮膚線維芽細胞から神経細胞や心筋細胞への直接変換を誘導する低分子化合物の組み合わせを予測し、その有用性を示した。この成果は、Bioinformatics誌に投稿し、採択され、出版された。 国内学会で口頭発表を1件、国際学会で口頭発表を1件行った。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
予定通り、多階層オミックスデータや分子パスウェイデータから、ダイレクトリプログラミングを誘導する低分子化合物を予測する機械学習の手法を開発することができた。パスウェイ制御の組み合わせの観点から細胞の直接変換を誘導する低分子化合物を予測する最適化アルゴリズムを開発した。まず、細胞が変換する分子メカニズムに着目し、変換過程で重要な生物学的パスウェイを明らかにした。次いで、その生物学的パスウェイを制御する低分子化合物の最適な組み合わせを探索することによって、細胞の直接変換を誘導する低分子化合物の新たな組み合わせを予測する手法を確立した。開発手法を用いて、皮膚線維芽細胞から神経細胞や心筋細胞への直接変換を誘導する低分子化合物の組み合わせを予測し、その有用性を示すことができた。この成果は、Bioinformatics誌に投稿し、採択され、出版された。
|
今後の研究の推進方策 |
ダイレクトリプログラミングを誘導する低分子化合物の情報を整備し、また潜在的な低分子化合物の組み合わせも今回予測することができた。それに加えて、ダイレクトリプログラミングを誘導することが報告されている低分子化合物の情報を収集して、その作用機序を推定することができた。今後は、低分子化合物の情報と転写因子の情報を用いて、低分子化合物の組み合わせの予測を行うためのアルゴリズムを開発する。また他の細胞腫への応用を行う。
|
次年度使用額が生じた理由 |
購入する予定だった計算機などの物品が、新型コロナウィルスやウクライナ情勢の影響で物流が滞り、年度内に納品が難しかったため。また雇用予定だった研究補助者で適任者が年度内に決定しなかったため。来年度は、計算機などの物品を購入し、研究補助者も雇用して、研究を進めていく予定である。
|