研究実績の概要 |
2次元ユークリッド空間にはめ込まれたm個の円周およびn個の単位区間で、多重点が横断的な2重点のみであるものを、(m, n)型リンコイド図式という(mとnは非負整数)。ただし、各2重点には交点の情報が与えられているとする。ライデマイスター移動と呼ばれる3種類の局所変形で生成される同値関係による(m, n)型リンコイド図式の同値類を、(m, n)型リンコイドという。とくに(1, 0)型リンコイドは結び目のことであり、この意味でリンコイドは結び目の一般化とみなせる。 昨年度に実施した研究により、絡み目のミルナー不変量を、(0, n)型リンコイドの不変量に拡張することができていた。そこで、本年度は絡み目のミルナー不変量を、1以上の整数mに対する(m, n)型リンコイドの不変量に拡張することに取り組んだが、残念ながら満足のいく結果を得ることはできなかった。 一方で、リンコイドとは異なる結び目の一般化にあたる、仮想結び目の研究について以下のふたつの成果が得られた。 (1) 仮想結び目の基本的な不変量であるn-ねじれ数と、2k-移動と呼ばれる局所変形との間に、関係があることを見出した。すなわち、ふたつの仮想結び目が2k-移動の有限列で互いに移り合うならば、それらのn-ねじれ数の値はkを法として合同であることを示した。 (2) 奇数nにわたるn-ねじれ数の和は、仮想結び目の奇ねじれ数とよばれる。この不変量は、クシイ移動と呼ばれる局所変形と対応することが知られている。この結果を踏まえ、2k-移動とクシイ移動を組み合わせて考えることにより、奇ねじれ数の2kを法とした合同類が反映する仮想結び目の幾何的な性質を明らかにすることができた。すなわち、ふたつの仮想結び目が2k-移動およびクシイ移動の有限列で互いに移り合うための必要十分条件は、それらの奇ねじれ数が2kを法として合同であることを示した。
|