• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

一次元大規模相互作用系における極限定理の研究

研究課題

研究課題/領域番号 21K20332
研究機関慶應義塾大学

研究代表者

須田 颯  慶應義塾大学, 理工学研究科(矢上), 研究員 (80912386)

研究期間 (年度) 2021-08-30 – 2024-03-31
キーワード大規模相互作用系 / 箱玉系 / 確率調和振動子鎖
研究実績の概要

本研究課題では, 大規模相互作用系と呼ばれる自由度の大きい微視的系から時空スケール極限により巨視的振る舞いを導出することを目的とする. 特に, ランダムな初期配置の箱玉系(ランダム箱玉系)や, 確率的摂動が加えられた調和振動子鎖(確率調和振動子鎖)など, 具体的かつ重要な一次元大規模相互作用系を扱ってきた.
最終年度は, コロナ禍によって延期されていたフランスへの研究滞在を行い, 関連分野の研究者らと議論を行った. 彼らとの議論を通して, 上記した二つの数理モデルに関して, 以下の成果を得た. 箱玉系について, 前年度までの研究によって得られた新しい線形化手法である「席番号配置」と, 既存の線形化手法である「10-elimination」の対応を, {0,1}^{Z} 上で定義された「両無限」箱玉系において与えた. この結果に関するプレプリントは arXiv にアップロードされている. これにより, 両無限箱玉系に関する長時間挙動のより詳細な解析が可能になり, 得られた部分的な成果については学会発表を行なっている. 確率調和振動子鎖について, パラメータを含む新しいタイプの境界条件を持つ場合を考察し, パラメータに応じて, 全く異なる巨視的振る舞いが得られることを証明した. この結果に関しては, より一般的な状況において考察したのちに, 論文としてまとめる予定である.
期間全体を通じての主要な成果は, 「席番号配置」の開発である. この手法によって, 特にランダム箱玉系の解析が今後より進展していくことを期待している.

  • 研究成果

    (5件)

すべて 2024 2023 その他

すべて 国際共同研究 (1件) 学会発表 (4件) (うち国際学会 2件、 招待講演 3件)

  • [国際共同研究] Universite Paris-Dauphine/University Lyon 1(フランス)

    • 国名
      フランス
    • 外国機関名
      Universite Paris-Dauphine/University Lyon 1
  • [学会発表] 無限粒子系、確率場の諸問題XVIII2024

    • 著者名/発表者名
      須田 颯
    • 学会等名
      Diffusive fluctuations for the box-ball system
  • [学会発表] Derivation of fractional diffusion equations from stochastic harmonic chains2023

    • 著者名/発表者名
      Hayate Suda
    • 学会等名
      Evolution Equations and Related Topics
    • 国際学会 / 招待講演
  • [学会発表] Diffusive fluctuations for the box-ball system in low density regime2023

    • 著者名/発表者名
      Hayate Suda
    • 学会等名
      The 21st Symposium Stochastic Analysis on Large Scale Interacting Systems
    • 国際学会 / 招待講演
  • [学会発表] Derivation of fractional diffusion equations from stochastic harmonic chains2023

    • 著者名/発表者名
      須田 颯
    • 学会等名
      非線形解析セミナー
    • 招待講演

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi