• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2012 年度 実績報告書

超函数の積分変換と無限階微分作用素の研究

研究課題

研究課題/領域番号 22540173
研究機関千葉大学

研究代表者

岡田 靖則  千葉大学, 理学(系)研究科(研究院), 教授 (60224028)

研究期間 (年度) 2010-04-01 – 2015-03-31
キーワード超函数 / 擬微分作用素 / 無限階微分作用素
研究概要

超函数の半連続写像に関して、コンパクト台を持つ超函数の空間や実解析函数の空間から超函数の空間への場合には、積分変換による表現可能性と、その積分核の貼り合わせ可能性 (大域切断の表現) があり、また種々の性質を調べるために無限階微分作用素による割り算が可能であった。局所凸空間に拡張するには、ベクトル値正則函数の空間の性質、とくに局所凸空間の反射性と正則函数の空間の双対性が関連することがわかってきた。次年度以降に引き続き取り組みたい。
有界型の超函数を対象とした変換については、「無限遠における可積分性」の考察はあまり進まなかったが、前年度に引き続き、強位相が Montel 的ではない例として反射的バナッハ空間に値をとる有界型超函数に対する作用素および方程式を考察するとともに、弱い意味のケーテの双対性を示し、さらに反射的局所凸値の場合の考察にも端緒をつけた。また、ベキ乗可積分型の超函数の大域切断を考察し、その象限分割の楔による境界値表示を与えた。
これらの研究について、無限次元の複素解析や位相解析の文献等を参照するとともに、連携研究者の石村氏や研究協力者の Liess 氏をはじめとして各地の専門家と連絡を取り意見を求め、さらに京都の研究集会や御茶ノ水の研究集会を主催する他、姫路、札幌等の研究集会等に参加し、これまでに得られた成果の発表や、参加者との研究連絡を行なった。また、成果の一部は Liess 氏との共著論文および代表者の論文の形で公開した。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

超函数の半連続写像に関する部分が引き続き若干遅れているものの、一方で有界型の超函数を対象とした変換については想定以上に進展している。さらに、双方に共通して、局所凸空間の反射性、正則函数の空間の双対性が関連することが明らかになってきており、全体としてはおおむね順調といえる。

今後の研究の推進方策

これまでと同様に計画に沿う形で進めていくが、全般に渡ってベクトル値正則函数の空間の双対性が関連することがわかってきたので、ここに重点を置きたい。

  • 研究成果

    (5件)

すべて 2013 2012

すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (3件)

  • [雑誌論文] Support properties for integral operators in hyperfunctions2012

    • 著者名/発表者名
      Otto Liess and Yasunori Okada
    • 雑誌名

      Advances in Mathematics

      巻: 231 ページ: 1439--1461

    • DOI

      10.1016/j.aim.2012.07.002

    • 査読あり
  • [雑誌論文] A notion of boundedness for hyperfunctions and Massera type theorems2012

    • 著者名/発表者名
      Yasunori Okada
    • 雑誌名

      Banach Center Publications

      巻: 97 ページ: 101--111

    • DOI

      10.4064/bc97-0-7

    • 査読あり
  • [学会発表] A functional approach to bounded hyperfunctions2013

    • 著者名/発表者名
      Yasunori Okada
    • 学会等名
      Recent development of theory of analytic functionals and related topics
    • 発表場所
      北大, 札幌
    • 年月日
      20130306-20130308
  • [学会発表] Bounded hyperfunctions and Massera type theorems2013

    • 著者名/発表者名
      Yasunori Okada
    • 学会等名
      偏微分方程式姫路研究集会
    • 発表場所
      姫路モノリス, 姫路
    • 年月日
      20130222-20130223
  • [学会発表] Boundary value representations for bounded hyperfunctions and some variants2012

    • 著者名/発表者名
      Yasunori Okada
    • 学会等名
      Recent development of microlocal analysis and asymptotic analysis
    • 発表場所
      RIMS, 京都
    • 年月日
      20121023-20121026

URL: 

公開日: 2014-07-24  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi