• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2010 年度 実績報告書

擬軌道尾行性によるホモクリニッククラスの特徴付けに関する研究

研究課題

研究課題/領域番号 22540218
研究機関宇都宮大学

研究代表者

酒井 一博  宇都宮大学, 教育学部, 教授 (30205702)

キーワード力学系理論 / 擬軌道尾行性 / ホモクリニッククラス / 双曲性 / 占有的分割
研究概要

擬軌道尾行性(Shadowing Property,以下,SP)の概念は力学系理論の研究において様々な場面で現れ,力学系の定性的理論の研究において重要な役割を担ってきた。近年,SP理論の発展には目覚しいものがあり,力学系の数値計算的研究の基盤を固めるだけでなく,多くの興味深い定性論的研究結果も生み出されている。SPは,力学系の安定性に関係する概念である。多様体M上のSPをもつ微分同相写像全体をSP(M)で表す。研究代表者は,そのC^1-位相に関する内点集合を構造安定性として特徴付けた。SP理論における最も基本的な研究対象は,微分同相写像fの鎖回帰集合R(f)である。R(f)は,ある同値条件により鎖成分と呼ばれるものに分割される。研究代表者の研究成果を応用することにより,北京大学のグループが,fの双曲型周期点pを含む鎖成分C_f(p)は,自然なSP-C^1-開条件のもとで双曲的であることを解明している。fの双曲型周期点pの安定多様体・不安定多様体の交わりの閉包をpのホモクリニッククラスといいH_f(p)で表す。一般にH_f(p)は,C_f(p)の真部分集合で,力学系理論における基本的な研究対象である。本研究の目的は,M上の微分同相写像fの双曲型周期点pのホモクリニッククラスを,自然なSP-C^1-開条件のもとで微分力学系理論の視点から特徴付けすることである。平成22年度の研究では,任意の鎖成分に対し,局所極大という付加条件の下でその双曲性を証明した(数学専門雑誌に投稿中)。

  • 研究成果

    (4件)

すべて 2010

すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (2件)

  • [雑誌論文] C^1-stably weakly shadowing homoclinic classes admit dominated splittings2010

    • 著者名/発表者名
      S.Gan, K.Sakai, L.Wen
    • 雑誌名

      Discrete and Continuous Dynamical Systems

      巻: 27 ページ: 205-216

    • 査読あり
  • [雑誌論文] Positively expansive differentiable maps2010

    • 著者名/発表者名
      K.Sakai
    • 雑誌名

      Acta Mathematica Sinica, English Series

      巻: 26 ページ: 1839-1846

    • 査読あり
  • [学会発表] C^1-stably weakly shadowing homoclinic classes2010

    • 著者名/発表者名
      K.Sakai
    • 学会等名
      Workshop on Dynamical Systems and Applied Mathematics
    • 発表場所
      Uniwersytet Jagiellonski, Krakow, Polska
    • 年月日
      2010-10-15
  • [学会発表] C^1-stably weakly shadowing homoclinic classes2010

    • 著者名/発表者名
      K.Sakai
    • 学会等名
      Various Aspects of Dynamical Systems, ICM 2010 Satellite Conference
    • 発表場所
      The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, INDIA
    • 年月日
      2010-08-31

URL: 

公開日: 2012-07-19  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi