研究概要 |
本研究では,大きさ数100nmから数μmの磁性ビーズを細胞に接着させ,交番磁界を与えることにより,細胞膜の直接振動刺激を行い,細胞機能の発現への影響を検討することを目的とする.(1)共焦点光学系+交番磁界発生装置によるナノ振動観察システムの構築,(2)ナノ振動観察システムによるナノビーズ振動周波数特性の計測,(3)ナノビーズ振動下での細胞内Ca2+濃度変化の観察を行う.平成22年度は主に共焦点光学系を用いた計測システムと交番磁界発生システムの検討を行った. 計測システムの共焦点光学系は無限遠補正タイプの共焦点光学系とした.マイクロ微粒子の振動を観察するための基本光学系の設計およびレーザトラッピング捕捉基礎実験,レーザ反射強度計測実験を行った.提案する光学系では,細胞に付着させた磁性ビーズ(マイクロ微粒子)に,リレーレンズ系を介してHe-Neレーザを照射する.交番磁界によって,磁性ビーズが振動すると,ビーズ上でのHe-Neレーザ反射角が変化し,反射光検出用フォトディテクタにおいて強度変化として検出される.マイクロ微粒子の中心位置と計測系中心位置を合わせるために,直径8μmのマイクロ微粒子のレーザトラッピング捕捉も試みた.波長532nmのHe-Neレーザでプローブを安定に捕捉することに成功すると共に,マイクロ微粒子位置変動によりレーザ反射強度が変動することを確認した.交番磁界発生システムに関しては,パーソナルコンピュータと専用DSPボード,オペレーショナルアンプ回路,電磁石コイルから成るシステムを構築し,最大1kHzまでの交番磁界発生を確認した.平成23年度には,同システムを交番磁界発生システム上に組み込み,実際に発生する磁性微粒子の振動を検出することを目指す.
|