研究概要 |
有限群のモジュラー表現における重要な問題のひとつに,与えられた群の可換不足群をもつブロックとそれにブラウアー対応するp-局所部分群のブロックは導来同値だろうと予想したブルエによる可換不足群予想がある。可換不足群予想の解決のためには非可換不足群をもつブロックについての考察も重要であると考えられている。また,有限体上の一般線型群などの無限系列の群についての可換不足群予想は,与えられた有限p-群を不足群にもつブロックの森田同値類は有限個だろうと予想したドノバン予想とも関係し重要である。本研究では,これらのことを踏まえて,非可換不足群をもつ一般線型群のブロックの森田同値類分類を行うことを目的の一つとしているが,その準備として本年度は,巡回シロー部分群をもつ群を拡大して得られる非可換シロー部分群をもつ群の主ブロックに関する考察を行った。とくに,指標に関するブルエ予想が成立している例として,ある条件のもとでの有限体上の3次特殊線形群をあげ,より強く導来同値が成立するかどうかの検証に向けて,この群の主ブロックにおける単純加群のGreen対応子について考察した。非可換シロー部分群をもつ場合,射影加群の構造がより複雑になるためGreen対応のLoewy列を求めることは可換シロー部分群をもつ場合と比べると難しいことが多い。そのため,自明なソースをもつ加群を用いてGreen対応を特徴づけることを行い,無限系列として現れるこれらの群の主ブロックの単純加群のGreen対応子がすべて同じ特徴づけで得られることを確認した。このことは,これらの主ブロックが森田同値になることの検証に向けての重要な結果であると考えられる。
|