• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2012 年度 実績報告書

Bayes的アプローチによる統計的非正則推定の新展開

研究課題

研究課題/領域番号 22740053
研究機関筑波大学

研究代表者

大谷内 奈穂  筑波大学, 数理物質系, 助教 (40375374)

研究期間 (年度) 2010-04-01 – 2014-03-31
キーワード位置母数切断分布族 / 情報量損失 / Pitman推定量 / 荷重推定量 / 漸近集中確率
研究概要

統計的推測の漸近理論において、非正則分布族の典型として位置母数をもつ切断分布族について、特に両端点での密度の値が異なり、かつ両端点での密度の微分係数の和が0とならない場合について、その母数の推定問題を考える。従来、このような切断分布族の場合にPitman推定量の漸近展開を導出し、その漸近分散を求め、さらに切断点での密度の値による荷重推定量の漸近分布による比較も行った(Akahira, M., Ohyauchi, N. and Takeuchi, K. (2007))。一方、同じ分布族で極値統計量は1次の漸近情報量損失は0になるが、2次の漸近情報量損失は正値になることが分かり、さらに、極値統計量と漸近補助統計量の組から成る統計量の2次の漸近情報量損失が0となることも示されている(Akahira, M., Kim, H. G. and Ohyauchi, N. (2012))。
他方、位置共変推定の観点からは、極値統計量からつくられる荷重推定量は、2次の漸近情報量損失が0になるのではないかという問題が生じ得るため、その問題について考察を行った。
その結果、極値統計量からつくられる荷重推定量は位置共変推定量になるが、その漸近情報量損失は1次のオーダーですら0にはならないことを示した。
さらに、(AOT07)におけるPitman推定量の漸近展開からPitman推定量の漸近分布を求めることができたので、 極値統計量から成る荷重推定量の漸近分布を考え、それらの推定量の漸近集中確率を求め、それらを数値計算的観点から比較を試みた。
その結果、Pitman推定量は荷重推定量より漸近集中確率の意味で漸近的に一様に良いとは限らないことが示せた。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

統計的推測理論において、分布が途中で切断されている、特に両端点での密度の値が異なり、かつ両端点での密度の微分係数の和が0とならない場合の情報不等式を導出するために、上記の条件を満たす場合について, 極値統計量の漸近情報量損失に関する研究を行い、極値統計量と漸近補助統計量の組から成る統計量は, 2次のオーダーまで漸近情報量損失を起こさないことが示せた。また、極値統計量からつくられる荷重推定量は位置共変推定量となるので、情報量損失を起こさないように見えるが、実は、その漸近情報量損失は1次のオーダーですら0にはならないことが分かり、さらに、位置共変推定量の中で平均2乗誤差を最小にする推定量であるPitman推定量と極値統計量から成る荷重推定量の漸近分布を考え、それらの推定量を漸近集中確率の観点から比較を行った。
上記の研究結果を基に、より一般の非正則分布族に対する情報不等式の導出についての研究を順調に進められている。

今後の研究の推進方策

両側で切断されている分布族における位置母数の推定問題において、特に両端点での密度の値が異なり、かつ両端点での密度の微分係数の和が0とならない場合について、適当な事前分布を用いて未知母数の推定量のBayesリスクに関する漸近的な下界を求め、推定量のBayesリスクに関する情報不等式を導出する。これまでの研究結果から、下界を達成するBayes推定量は極値統計量や漸近補助統計量と密接な関係があるのではないかと予想されるので、その関係性についても考察を行う。さらに、最尤推定量、最大確率推定量等のリスクと数値的な比較も行う。
また、Pitman推定量と極値統計量からなる荷重推定量との比較について、漸近集中確率の観点からだけではなく、漸近的なPitman closerの観点からも比較を行い、それぞれの推定量のその観点からの良さについて考察する。

  • 研究成果

    (3件)

すべて 2012 その他

すべて 雑誌論文 (2件) (うち査読あり 1件) 学会発表 (1件)

  • [雑誌論文] Loss of information of a statistic for a family of non-regular distributions, II: More general case2012

    • 著者名/発表者名
      Akahira, M., Kim, H. G., Ohyauchi, N.
    • 雑誌名

      Ann. Inst. Statist. Math.

      巻: 64(6) ページ: 1121-1138

    • DOI

      10.1007/s10463-011-0347-4

    • 査読あり
  • [雑誌論文] The asymptotic expansion of the maximum likelihood estimator for a truncated exponential family of distributions2012

    • 著者名/発表者名
      赤平昌文, 大谷内奈穂
    • 雑誌名

      京都大学 数理解析研究所講究録

      巻: 1804 ページ: 188-192

  • [学会発表] Loss of information associated with the statistic in a class of non-regular cases

    • 著者名/発表者名
      M. Akahira, H. G. Kim, N. Ohyauchi.
    • 学会等名
      The 2nd Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • 発表場所
      International congress center EPOCHAL TSUKUBA

URL: 

公開日: 2014-07-24  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi