今後の研究の推進方策 |
1)電荷移動現象のナノ構造体のサイズ依存性の解明 ナノ構造体が担持された金属酸化物の触媒活性は、ナノ構造体のサイズに大きく依存する。そこで、金属酸化物とナノ構造体との間の電荷移動現象が、ナノ構造体のサイズにどのように依存するかを解明する。 2)反応ガス中でのナノ構造体の局所電荷状態の解明 ナノ構造体を担持した金属酸化物表面にO2, H2, CO, CO2ガスを吸着させ、ガス吸着に伴うナノ構造体や金属酸化物表面の構造と電荷状態の変化を原子レベルで検討する。特にナノ構造体の中央頂上部分と周縁部分の電荷状態の違いを解明する。また、ナノ構造体の電荷状態が、表面欠陥の生成やナノ構造体のサイズにどのように影響されるかを解明する。 3)金属酸化物表面上のナノ構造体の触媒メカニズムの解明 反応ガス中でのナノ構造体の局所電荷状態(帯電状態や局所双極子モーメントの分布)と反応ガスの局所吸着状態(吸着分子種とその結合状態に関係)、触媒化学的な分析結果と比較検討し、金属酸化物表面上でのナノ構造体の触媒メカニズムを解明する。 4)シングルアトム触媒のメカニズムの解明 担持するナノ構造体を単原子の貴金属にした金属酸化物表面(シングルアトム触媒)に対しての触媒メカニズムを解明する。ここで、金属酸化物材料としてはNiOやCeO2を、担持する単原子としてはAuを取り上げる。 5)ナノ構造体表面上の吸着ガスの局所吸着状態の解明 ナノ構造体を担持した金属酸化物表面に吸着したガス分子(O2, H2, CO, CO2)の吸着状態を解明する。具体的には、ケルビンプローブ力顕微鏡を用いて、吸着したガス分子の表面電位(吸着種とその結合状態に関係)が、ナノ構造体の中央頂上部分と周縁部分とで、どのように変化するかを解明する。
|