• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Understanding E-Learning Features in Online Courses

研究課題

研究課題/領域番号 22K02874
研究機関立命館大学

研究代表者

マルチュケ モリツ  立命館大学, グローバル教養学部, 准教授 (80738584)

研究分担者 林 勇吾  立命館大学, 総合心理学部, 教授 (60437085)
研究期間 (年度) 2022-04-01 – 2025-03-31
キーワードE-learning / Kano model / Educational technology / Machine Learning
研究実績の概要

The research system setup was completed (dynamic CMS website with necessary functionality). Multiple online courses (Introduction to Algorithms and Programming, Social Change with AI, Software Engineering) were implemented and data was collected and analyzed for two classes. Anonymous ex-ante and ex-post questionnaires were designed and distributed. The research results, stemming from the Kano model analysis and AI language model analysis, were published in two international conferences and one journal.
The perception of e-learning and online courses by students can provide valuable insights into course design and user experience. Students were surveyed on the same 12 features related to online course satisfaction before and after each course. Textual comments were also gathered. The Kano model from customer satisfaction research was used to perform an ex-ante and ex-post comparative analysis for the 12 features of both short-term and long-term courses. A simple neural network was trained on freeform comments for both courses to create language models (Word2Vec) and compare the findings with the Kano model results. The results of the macro shift (expectations vs. consumption experience) and micro shift (individual student’s shift within a requirement) were compared.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Multiple online courses were implemented and data was collected and analyzed for two classes. Anonymous ex-ante and ex-post questionnaires were designed.
The research progressed according to plan.

今後の研究の推進方策

Data from further courses is planned to be implemented and evaluated. In addition to undergraduate classes, graduate classes will also be taken into account.
Results from additional classes will be consolidated with previous findings. Advanced language models will be trained to evaluate freeform text comments and create a hybrid model with the Kano method. Updated results will be published in top international conferences. High impact journals are being targeted next for dissemination of these findings.

  • 研究成果

    (6件)

すべて 2022

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 1件) 学会発表 (4件) (うち国際学会 2件、 招待講演 2件)

  • [雑誌論文] AI-Supported Evaluation of Kano Model Features for Online Courses2022

    • 著者名/発表者名
      Daniel Moritz Marutschke and Yugo Hayashi
    • 雑誌名

      ICIC Express Letters - An International Journal of Research and Surveys

      巻: 16(5) ページ: 505-512

    • DOI

      10.24507/icicel.16.05.505

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Kano Model-Based Macro and?Micro Shift in?Feature Perception of?Short-Term Online Courses2022

    • 著者名/発表者名
      Marutschke Daniel Moritz、Hayashi Yugo
    • 雑誌名

      Springer Lecture Notes in Computer Science (LNCS)

      巻: 13632 ページ: 112~125

    • DOI

      10.1007/978-3-031-20218-6_8

    • 査読あり / 国際共著
  • [学会発表] Comparing Short-Term and Long-Term Online Courses Using the Kano Model and Neural Network Language Models2022

    • 著者名/発表者名
      D. Moritz Marutschke
    • 学会等名
      Proceedings of the 30th International Conference on Computers in Education (ICCE). Asia-Pacific Society for Computers in Education
    • 国際学会
  • [学会発表] Kano Model-Based Macro and Micro Shift in Feature Perception of Short-Term Online Courses2022

    • 著者名/発表者名
      D. Moritz Marutschke
    • 学会等名
      Springer Lecture Notes in Computer Science (LNCS), CollabTech 2022: Collaboration Technologies and Social Computing
    • 国際学会
  • [学会発表] Bionic Computation in Business2022

    • 著者名/発表者名
      D. Moritz Marutschke
    • 学会等名
      OHM-Lectureship at Nuremberg Institute of Technology
    • 招待講演
  • [学会発表] Data Mining to Create Value2022

    • 著者名/発表者名
      D. Moritz Marutschke
    • 学会等名
      Xiamen University of Technology
    • 招待講演

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi