研究実績の概要 |
本研究の大きな目的は,多様体上の幾何構造に関する「幾何学的」研究と「トポロジー的」研究をの関連を追求することである.考察のアイディアや証明の方針として,ホモトピー原理の考えかたをが鍵になると想像している.2022年度に行った研究では(3,5)-分布とそれに関連する幾何構造に関して,考察をした.特に,閉多様体上での構造の存在や分類は微分トポロジーにおける自然な興味である. (3,5)-分布とは,5次元多様体上の最も積分が不可能な階数3の接分布構造である.すなわち,5次元多様体上の各点に3次元の接部分空間を対応させる接分布構造であり,1回のLieかっこ積でその多様体の接束になるものである.これは,ロケットの制御や机上を転がるボールのモデルとして現れる構造である.またCartanの(2,3,5)分布や,特殊多重旗構造と呼ばれる幾何構造の一部分とも考えられる. (3,5)-分布に関しては,5次元閉多様体でその接束が自明な3次元部分束を持つことが存在の必要十分条件であることが分かった.また分類に関しては,5次元多様体を固定した時に,2つの(3,5)-分布が形式的構造としてホモトピックであれば,(3,5)-分布としてホモトピックであることが分かった.ここで形式的構造とは,階数3の接分布構造とその上の1次独立な2つの2形式のことである. すなわちこの形の研究は,多様体上の幾何構造が多様体の位相的な性質に影響することを意味している.さらに,トポロジーと微分幾何学の相互作用による双方の発展のみならず,制御理論への寄与も期待できる. そして,2022年度中に研究対象を関連する他の接分布構造へ拡大させている. 研究の一部は国内外の研究者たちとの共同研究として進めている.
|