• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

Linkoid の多項式不変量の開発

研究課題

研究課題/領域番号 22K03315
研究機関山口大学

研究代表者

宮澤 康行  山口大学, 大学院創成科学研究科, 教授 (60263761)

研究期間 (年度) 2022-04-01 – 2026-03-31
キーワードlinkoid / 多項式不変量 / 結び目理論
研究実績の概要

結び目の Kauffman 多項式に相当する “knotoid”の Kauffman 多項式の構成と計算例を記した論文「A polynomial invariant of Kauffman type for knotoids II」(Journal of Knot Theory and Its Ramifications,Vol. 32, No. 9 (2023) 2350051 (44 pages), DOI:10.1142/S0218216523500517)を発表した。この論文は同時に同専門雑誌に掲載された科学研究費基盤研究(C)課題番号17K05255の支援を受けた論文「A polynomial invariant of Kauffman type for knotoids」 (Journal of Knot Theory and Its Ramifications, Vol. 32, No. 9 (2023) 2350050 (46 pages), DOI:10.1142/S0218216523500505)と対をなす論文として位置づけられる。
どちらの多項式不変量も研究代表者の論文「A multi-variable polynomial invariant for unoriented virtual knots and links」(Journal of Knot Theory and Its Ramifications 18 (2009))の手法を“knotoid”に応用することで得られている点で極めて類似した性質を有するものであるが,不変量としては異なるトポロジーを示す点が大きな特徴である。特に,結び目の Kauffman 多項式であれば同じ結論に至る2つの異なるスケイン関係式に対して,上記2つの多項式の間では異なる結論が導かれる状況が生み出されている。このことは,結び目理論では起こらない“knotoid”理論における特有の現象であり,特筆すべき結果であることを示している。
また,発表論文における多項式不変量のある局所変形の不変性に関しては,これまでのほとんどすべての多項式不変量がもつ特徴と明らかに異なる様相を呈していることが最大の特徴として挙げられる。これは論文の多項式不変量が新規性を有することに言及する本質的な理由となるものである。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

昨年度に引き続き“knotoid”の多項式不変量の構成手法の模倣に関し,“linkoid”への適用を阻害する障害の解析が順調に進んでいると考えられるため,現時点では研究に大きな遅れはないと判断する。

今後の研究の推進方策

昨年度と同様に“linkoid”の多項式不変量の構成に向けて,これまでの調査結果を精査・分析し,適用への障害を回避する手法を構築することを検討する。

次年度使用額が生じた理由

参加予定であった研究集会等がオンライン開催に変更されたり,大学の業務と重なったりして出張旅費が不要となり使用計画が当初の予定通りに遂行できなかったため。今後は研究集会に参加することで出張旅費として使用することを中心に,研究環境改善を目的とした物品購入等に充てることで有効活用する計画である。

  • 研究成果

    (1件)

すべて 2023

すべて 雑誌論文 (1件) (うち査読あり 1件)

  • [雑誌論文] A polynomial invariant of Kauffman type for knotoids II2023

    • 著者名/発表者名
      Miyazawa Yasuyuki
    • 雑誌名

      Journal of Knot Theory and Its Ramifications

      巻: 32 ページ: 2350051

    • DOI

      10.1142/S0218216523500517

    • 査読あり

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi