• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

幾何多様体の変換群に関する共形不変量の構成と消滅による等長群の出現

研究課題

研究課題/領域番号 22K03319
研究機関城西大学

研究代表者

神島 芳宣  城西大学, 理学部, 特任教授 (10125304)

研究期間 (年度) 2022-04-01 – 2025-03-31
キーワード群コホモロジー / 固有作用 / 幾何多様体 / 幾何構造 / 剛性 / CR幾何学 / 共形幾何学 / 4元数コンタクト幾何学
研究実績の概要

Xが対称性の高い群作用Gを有するときには,Xは球面,ユークリッド空間,双曲空間のような
標準幾何多様体に一意化されるか(幾何剛性定理)という視点に立って研究した.無限次元アーベル群Cを層係数に持つ微分コホモロジー H^*(G,C) を導入し,そのコホモロジー群の消滅が与えるときの幾何学的解釈を試み,リー群Gの固有作用がどのように特徴付けられるかを調べた.今回得られた結果はケーラー多様体Mの正則相似剛性『正則相似変換群GがMに固有に作用しないならば,複素空間C^nに正則同型となる』であり,そのアイディアの説明を試みる.2n次元ケーラー多様体に対してはBochner曲率がWeyl曲率のある意味でアナロジーとして定義され,局所共形ケーラー多様体はその被覆空間をとることで元の計量と共形正則なケーラー計量がとれるので, Bochner曲率が定義できる.しかし注意することは, Bochner曲率はWeyl曲率とは異なり,共形不変ではないことである.したがってその消滅性とケーラー多様体の共形性との関連はどういうものかテンソル計算では得られない幾何の興味深い対象となる.この方面に沿って得られた結果を述べる.(Y,Ω,J))をケーラー多様体, 実次元≧4ならば正則共形変換群Gの元fは相似変換 (f^*Ω=cΩ, ここでc>0は定数)となるので, Gは正則相似変換群Hom(Y, Ω,J)である. 我々が示した結果から, (1) GがY上の固有作用ならば,可微分関数vが存在して, Θ=v・Ωとおくとき,(Y, Θ, J) はΘ・Jをエルミート計量とする共形ケーラー多様体 (閉1形式θが存在して,微分dΘがθとΘの外積になる)であり,Gは正則等長群Isomh (Y,Θ・J)に一致する.(2) そうでなければYはC^nに一意化(正則共形)される.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

新しい分野なので、いろいろ興味深い結果が得られる。
特に可縮空間上のリー群の固有作用の存在と群コホモロジーの消滅性が関係が
不変量を与えて、初めて特徴づけらた.

今後の研究の推進方策

このままのペースで、結果をまとめて論文を出したい.

次年度使用額が生じた理由

コロナで予定通りの計画(特に国内外の)出張が遂行できないことが続いている.

  • 研究成果

    (1件)

すべて 2023

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件)

  • [雑誌論文] Isometry groups with radical, and aspherical Riemannian manifolds with large symmetry, I2023

    • 著者名/発表者名
      O. Baues, Y. Kamishima
    • 雑誌名

      Geometry and Topology (近刊)

      巻: - ページ: -

    • 査読あり / 国際共著

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi