研究課題/領域番号 |
22K03400
|
研究機関 | 北陸先端科学技術大学院大学 |
研究代表者 |
石原 哉 北陸先端科学技術大学院大学, 先端科学技術研究科, 教授 (10211046)
|
研究期間 (年度) |
2022-04-01 – 2026-03-31
|
キーワード | 構成的数学 / 構成的集合論 / バナッハ空間 / 一様空間 |
研究実績の概要 |
数学理論により堅固な基礎を与える構成性と可述性に注目し、「構成性・可述性を保証するように論理・集合論を制限した場合、どのような数学理論がどこまで展開できるか」という独自の問いに迫るため、ケーススタディとして構成的かつ可述的な集合論CZFおよびその部分体系においてバナッハ空間における双対性と一様空間それぞれの理論の構築を試みた。 集合論における多くの恒等性(等号)は、集合とその上の同値関係を用いて商集合を構成することによって与えられているが、商集合を構成すると代表元に関する情報が失われてしまう。代表元の情報を取り出すためには選択公理が必要だが、選択公理を仮定すると構成性・可述性がともに崩れてしまう。そのため集合とその上の同値関係の対により定義されるセトイドを中心的な概念として扱う必要があることが判明した。 バナッハ空間の双対性を扱うためには、線形空間と原点を含む部分集合(単位球)およびそれにより生成される一様位相を考えればよいことが明らかになった。和とスカラー倍が連続になるために単位球が満たすべき条件を吟味した(している)。 このように捉えれば、一様位相は有向集合により添字付けされた基あるいは近傍族により与えることが自然であることが分かってきた。バナッハ空間が完備であることを考えれば、このように定義された一様位相の完備化を与えることが重要である。完備化の手法としてはコーシー・フィルターとコーシー・ネットがあるが、距離空間の場合の一般化として完備化を定義すればネットを用いることが自然である。この場合恒等性の問題と深く関係しており完備一様空間はセトイドとして与えなければならないことが判明した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
集合あるいはセトイド、単位球が満たすべき性質、一様空間の与え方(基あるいは近傍族)完備化の手法(フィルターあるいはネット)など、理論を整合的かつ自然に構築するためには多くの深く結びついた問題を吟味する必要があることが判明したため。
|
今後の研究の推進方策 |
理論を整合的かつ自然に構築するために、多くの深く結びついた問題を辛抱強く地道に吟味していく。おそらく「集合あるいはセトイド」の問題はセトイドを用いるのが自然であり、セトイドを自然に扱える枠組みの構築を行っていく。一様空間の与え方「基あるいは近傍族」の問題は、距離空間の一般化としては基、単位球により生成される一様位相としては近傍系であり、整合的な枠組みを吟味していく。完備化の手法「フィルターあるいはネット」の問題は、距離空間の一般化およびバナッハ空間の定義の観点からすればネットであり、ネットを用いた完備化を中心に関連する「集合あるいはセトイド」や「基あるいは近傍系」などの問題を解決していく。
|
次年度使用額が生じた理由 |
コロナ禍の影響で海外研究協力者との研究打合せや海外ワークショップへの参加・講演を控えていたこと、および当該年度出版予定であった書籍の出版が次年度に繰り越されたことなどから、次年度使用額が生じた。次年度は日本の水際対策が大幅に緩和されるので、5月の海外ワークショップへの参加やそれに引き続いてルートヴィッヒ・マキシミリアン大学ミュンヘンでの研究打合せをはじめに海外研究協力者との研究打合せの再開を予定している。また、当該年度出版予定であった書籍も次年度に出版されることが確実なため、購入する予定である。
|