• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Surface PDE: a minimizing movement approach

研究課題

研究課題/領域番号 22K03440
研究機関明治大学

研究代表者

Ginder Elliott  明治大学, 総合数理学部, 専任教授 (30648217)

研究期間 (年度) 2022-04-01 – 2025-03-31
キーワードsurface PDE / minimizing movements / interfacial dynamics / level set method / approximation methods
研究実績の概要

Our research focused on developing minimizing movments for surface-constrained partial differential equations. The corresponding approximation methods were successfully realized by incorporating the closest point method into a functional minimization scheme.
Using our surface-type minimizing movements, we were able to effectively simulate mean curvature flow and hyperbolic mean curvature flow of interfaces on surfaces. These methods represent generalizations of the MBO (Merriman, Bence, and Osher) and HMBO (Hyperbolic Merriman, Bence, and Osher) algorithms, specifically tailored for the surface-constrained setting.
In addition, we designed a surface-constrained signed distance vector field (SDVF) for describing phase geometries on surfaces in multiphase settings. We further implemented the numerical algorithms that enable the application of the SDVF to computational problems.
Regarding our approximation method that combines the closest point method and minimizing movements, numerical error analyses were conducted for the heat and wave equations on surfaces, under various conditions. Convergence of our surface-type minimizing movement, with respect to the spatial discretization, was also examined. Our the results revealed that the numerical solution converges to the exact solution.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Over the past year, our research on minimizing movements for surface partial differential equations has made significant progress, closely aligning with our original plan and encountering minimal obstacles. Our primary goal was to extend the applicability of the closest point method by incorporating it into the setting of minimizing movements.

By addressing this task early on, we effectively initiated our research and established momentum, allowing it to commence smoothly and efficiently. Notably, numerical tests and analyses played a vital role in confirming and bolstering our findings, providing robust evidence to support our research outcomes.

今後の研究の推進方策

Looking ahead, the roadmap for our research included various tasks aimed at enhancing and refining our approximation methods. First of all, we endeavor to reduce the computational time of our methods--efficient, and accurate algorithms will enable new simulations and applications. Second, we will perform a numerical analysis of area preserving motions. This analysis will allow us to quantify and understand the numerical errors associated with our approximation methods, and to facilitate their refinement. Finally, it is necessary to evaluate the performance of our methods on complex geometries. These tests will access the robustness, stability, and accuracy of our methods on complex surface geometries. In turn, this will help to identify limitations and areas for improvement.

次年度使用額が生じた理由

Funds allotted for travel were preserved due to partaking in online discussions. Transferred funds will be used to supplement travel plans.

  • 研究成果

    (12件)

すべて 2023 2022 その他

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (9件) (うち国際学会 5件、 招待講演 1件) 図書 (1件) 備考 (1件)

  • [雑誌論文] Appearance and suppression of Turing patterns under a periodically forced feed2023

    • 著者名/発表者名
      B. Duzs, G. Hollo, H. Kitahata, E. Ginder, N. J. Suematsu, I. Lagzi, and I. Szalai
    • 雑誌名

      Communications Chemistry

      巻: 6 ページ: 1-10

    • DOI

      10.1038/s42004-022-00800-6

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Approximation methods for surface-constrained interfacial motions2023

    • 著者名/発表者名
      E. Ginder
    • 学会等名
      北陸応用数理研究会2023
    • 招待講演
  • [学会発表] Numerical analysis and application of the signed distance vector field2023

    • 著者名/発表者名
      I. Aoki, E. Ginder
    • 学会等名
      Taiwan-Japan Joint Workshop 2023
    • 国際学会
  • [学会発表] On the construction of minimizing movements for surface PDE2023

    • 著者名/発表者名
      T. Muramatsu, E. Ginder
    • 学会等名
      Taiwan-Japan Joint Workshop 2023
    • 国際学会
  • [学会発表] Construction and application of surface-constrained signed distance functions2023

    • 著者名/発表者名
      T. Shibata, E. Ginder
    • 学会等名
      Taiwan-Japan Joint Workshop 2023
    • 国際学会
  • [学会発表] Applications of the closest point method for surface PDE2023

    • 著者名/発表者名
      Y. Ote, E. Ginder
    • 学会等名
      Taiwan-Japan Joint Workshop 2023
    • 国際学会
  • [学会発表] Numerical analysis and application of minimizing movements for hyperbolic problems2023

    • 著者名/発表者名
      R. Sakai, E. Ginder
    • 学会等名
      Taiwan-Japan Joint Workshop 2023
    • 国際学会
  • [学会発表] 制約条件付き曲面上界面運動に対する近似解法2022

    • 著者名/発表者名
      村松拓真, E. Ginder
    • 学会等名
      2022年度応用数学合同研究集会
  • [学会発表] 曲面上符号付き距離の構築とその応用2022

    • 著者名/発表者名
      青木一哲, E. Ginder
    • 学会等名
      2022年度応用数学合同研究集会
  • [学会発表] Threshold dynamics for surface constrained interfacial motions2022

    • 著者名/発表者名
      E. Ginder
    • 学会等名
      Workshop on RDS
  • [図書] Variational Approach to Hyperbolic Free Boundary Problems2023

    • 著者名/発表者名
      E. Ginder, S. Omata, K. Svadlenka
    • 総ページ数
      94
    • 出版者
      Springer
    • ISBN
      978-981-19-6730-6
  • [備考] 研究室のHP

    • URL

      http://amth.mind.meiji.ac.jp/

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi