研究課題/領域番号 |
22K03629
|
研究機関 | 大学共同利用機関法人高エネルギー加速器研究機構 |
研究代表者 |
野尻 美保子 大学共同利用機関法人高エネルギー加速器研究機構, 素粒子原子核研究所, 教授 (30222201)
|
研究期間 (年度) |
2022-04-01 – 2026-03-31
|
キーワード | 素粒子論 / 深層学習 / 素粒子実験 |
研究実績の概要 |
本年度はジェットのシミュレーションの精密化に向けて以下のような整備をおこなった。1) 最新のPYTHIA8 Herwig 7 のイベントにおいて、十分な数のトップ及びQCDサンプルを生成する。 2) Particle Net や Particle transformer といった、最新のグラフニューラルネットワークアルゴリズムによる、イベント分類を行うことができるようにした。3) High level variable として重要な量を検討し、GNN と同等程度の性能を出しより安定して出せる模型を構築した。(すなわち、最適化に伴う誤差や、統計誤差が少なく、少ないイベント数で収束する。) High Level variable としては、ジェット内のサブジェットの運動量、ジェット内の粒子数、2点エネルギー相関のほか、ミンコフスキー汎関数をもとにした、粒子数分布による定量化をおこなった。このHigh level variable の入力をモジュラー化することによって、個別の入力の何が感度に向上しているかを明らかにした。特に、シミュレーションの間の違いは、ミンコフスキー汎関数を入力に入れることで、定量化できることを明らかにした。 新しい模型は、GPU メモリーとしてはGNNの 1/10程度しか必要とせず、また、入力を部分的に制限することで、どのような量が分類に効いているか、また異なるモンテカルロシミュレーションによる結果の差に、エネルギーが低い粒子の分布の粒子の相対距離が大きく関係していることが明らかいになった。 現在この成果について論文を執筆中である。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
PYTHIA とHerwig というParton shower のoder parameter がことなる、イベント生成モデルにおいて、IRC 安全ではない粒子数や粒子のひろがりを定量化するMFをもとに、Parton shower の角度分布にいまだに違いがあり、これが、イベントシミュレーションの系統誤差に寄与していることが明らかになった。 また、性能が高いParticle transformer 模型がかならずしもかならずしも解析結果が安定せず、分類に効果がある量を特定することが難しかったが、High level variable によって構成されたよりシンプルな模型でその性能を再現することで、系統誤差の低減において、どの量に着目すべきかを明らかにした。
|
今後の研究の推進方策 |
今後は、今回作成した模型を活用して、実験データを比較する方法を模索する。具体的んは、オープンデータ等を活用して、より実験データに近い模型について、この手法を応用して解析を行う。
|