• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

変状抽出のための簡易なアノテーションに基づく深層学習方式の開発

研究課題

研究課題/領域番号 22K04262
研究機関山口大学

研究代表者

藤田 悠介  山口大学, 大学院創成科学研究科, 准教授 (40509527)

研究期間 (年度) 2022-04-01 – 2025-03-31
キーワードDCNN / アノテーション / ファインチューニング / 可視化 / 自己教師あり学習 / 弱教師あり学習 / 異常検知 / 省力化
研究実績の概要

老朽化が進む社会インフラをいかに守るかは重要な課題であり、点検の高度化・効率化に向けて深層学習の活用にかかる期待は大きい。一般に、高性能な深層学習モデルを構築するためには、大量のデータを収集し、データに正確にラベルを付与(アノテーション)して教師データを作成する必要がある。データの収集や教師データの作成は煩雑であり、その省力化や効率化が期待されている。本研究では、簡易なアノテーションにより深層学習モデルを構築する新しい方式を開発する。
初年度は、コンクリート構造物および舗装路面の外観検査を効率化するために、DCNNモデルの構築に使用する教師データ作成のためのアノテーション(ラベル付け作業)を省力化する方法を多角的に開発した。まず、「分類モデルに可視化法を適用して領域分割モデルを構築する方法」を検討し、限られたデータセットの中で有効性を確認し、課題を明らかにした。また、「学習済みの領域分割モデルをFine-tuningして分類モデルを構築する方法」の開発、「少量のラベル付きデータと大量のラベルなしデータを用いてモデルを構築する自己教師あり学習の手法」の適用、および「弱教師あり学習によるアノテーションを省力化させる方式」の開発を行った。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

当初の計画にもとづく以下の課題①に加えて、課題②、③、④の検討を行い、一定の研究成果が得られた。
①分類モデルに可視化法を適用して領域分割モデルを構築する方法を検討した。予備実験として、限られたデータセットの中でその有効性を確認し、課題を明らかにした。
②舗装路面データを用いて、学習済みの領域分割モデルをFine-tuningして分類モデルを構築する方法を開発し、その有効性を確認した。この成果は学会発表済みである。
③少量のラベル付きデータと大量のラベルなしデータを用いてモデルを構築する自己教師あり学習の手法を適用してアノテーションの省力化を検討し、その有効性と課題を明らかにした。
④弱教師あり学習の枠組みから、アノテーションを省力化させる方式を開発し、有効性と課題を明らかにした。
当初の計画以上に遂行できており、おおむね順調に進展している。

今後の研究の推進方策

これまでの課題①~④について、継続して取り組む予定である。
課題③と④については、これまでの成果を学会発表する予定である。
また、これに加えて課題⑤として「異常検知モデルの適用」を計画している。

  • 研究成果

    (3件)

すべて 2023 2022 その他

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (1件) 備考 (1件)

  • [雑誌論文] Classification Model based on U-Net for Crack Detection from Asphalt Pavement Images2023

    • 著者名/発表者名
      Yusuke. Fujita, Taisei Tanaka, Tomoki Hori and Yoshihiko Hamamoto
    • 雑誌名

      Journal of Image and Graphics

      巻: 11 ページ: -

    • 査読あり / オープンアクセス
  • [学会発表] U-Netをもとにした舗装路面のひび割れ検出モデルの構築2022

    • 著者名/発表者名
      田中 大晴,藤田 悠介,堀 智樹,浜本 義彦
    • 学会等名
      第24回IEEE広島支部学生シンポジウム
  • [備考] 研究室Webページ

    • URL

      http://www.ir.csse.yamaguchi-u.ac.jp/~fujita/index.html

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi