研究課題/領域番号 |
22K05915
|
研究機関 | 第一工科大学 |
研究代表者 |
渋沢 良太 第一工科大学, 工学部, 講師 (10704588)
|
研究期間 (年度) |
2022-04-01 – 2026-03-31
|
キーワード | 骨格推定モデル / 肉牛の発情検知 / 説明可能性 |
研究実績の概要 |
人間によって理解が可能な根拠を提示する,肉牛の発情検知を実現するために,動画像処理による牛の骨格推定を行った.また,動画像による牛の骨格推定を行うシステムのアーキテクチャについて調査した. [(1)動画像処理による牛の骨格推定] まず,ネットワークカメラを複数の牛舎に複数台設置して常時稼働させ,肉牛の発情兆候を示す乗駕の様子を様々なアングルから撮影した動画データを収集した.日中の動画はカラー動画として,夜間の動画は赤外線モード撮影によるモノクロ動画として収集し,2022年3月末までに259件の動画を収集できた.動画から骨格推定するための方法として,一般物体認識モデルに基づく注視領域の抽出,骨格推定の転移学習による牛の骨格推定を行う方法を調査した.その結果,216件の乗駕シーンの動画に対して,約9割の真陽性率で同画像中の牛の領域を正しく推定できた.また,約6割の真陽性率で乗駕中の骨格推定を行えた. [(2)動画像発情検知システムのアーキテクチャ] 牛の動きは少なく,24時間中大きく動いている時間は僅かである.したがって,撮影した全動画に対して骨格推定処理を行うのは,計算量の観点からも無駄が多い.そのため,一定以上の動きが見られるシーンのみを少ない計算量で抽出し,抽出された動画のみに対して骨格推定を行う方法が良いと考えられる.一定以上の動きが見られるシーンのみを少ない計算量で抽出し,それを人間が目視して発情検知を行い,畜主より早く検知を行えるか調査を行い,この方法の有用性を検証した.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
ほぼ当初の予定通りに進められている.
|
今後の研究の推進方策 |
動画像処理に基づく骨格推定の精度を高めるため,データを継続して収集するとともに,カメラとは別の種類のセンサを使用し,そのセンサを用いた発情検知の結果と,動画像処理による発情検知の結果を比較して,骨格推定のモデルを改良する.
|
次年度使用額が生じた理由 |
購入予定の物品の値段の変更により,少額の差が生じた.
|