• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

身体運動の可視化テクノロジー・vMMGの開発

研究課題

研究課題/領域番号 22K06417
研究機関千葉大学

研究代表者

下村 義弘  千葉大学, デザイン・リサーチ・インスティテュート, 教授 (60323432)

研究期間 (年度) 2022-04-01 – 2025-03-31
キーワード筋活動 / 可視化 / 筋音図 / センサ / 発光 / モーションアーチファクト / マイクロフォン
研究実績の概要

初年度では大きく分けて三つの成果が得られた。センサモダリティの決定とセンサハウジングの仕様、筋音図(MMG)の振幅を色にエンコードする関数、さらに発展的な研究として、多点計測した場合の一括処理の方法、であった。
MMGの検出方法について文献を精査した結果、コンデンサマイクロホンが最も体動ノイズ(モーションアーチファクト;MA)の影響を受けいくいことが確認された。またMAをより低減するための円筒型ハウジングケースの空気室は、高さ2 mmとし直径はその倍以上とすることが望ましいことが明らかとなった。ハウジングケース外周を柔軟な粘着剤で皮膚に装着することも有効であった。これらの仕様を施したマイクロフォンがvMMGのセンサモダリティとして最適であることが明らかとなった。
MMGの振幅情報の色へのエンコードについて、最大値に至るまでの色調の変化が重要であると考えた。媒介パラメータとして筋電図(EMG)をMMGと同時に計測する実験を行った。EMGの振幅をバイオフィードバックし、指定された強度ごとに、主観的筋収縮強度に相当する色を、被験者に回答させた。その結果、EMGの振幅に相当する印象をもつ赤・緑・青(RGB)の混色関数が得られた。最終的にMMG振幅を色調に変換する関数が得られた。
vMMGモジュールは将来的に、多数装着してあたかも分布画像のように筋活動を観察することを目標の一つとしている。初年度はMMGのモジュールが未完成であるため、EMGを多点計測する実験を行った。その結果、全チャンネルの振幅値をもとに算出した情報エントロピーが、疲労や熟練度の評価に有効であることが示唆された。
これらの成果は、vMMGの技術的基礎の点で意義深く、3年で実現するための初年度業績として重要な位置づけを成すと言える。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

本研究の課題は以下の四つである。①振動や加速度などのセンサモダリティの最適化、②振幅処理とLED発光色へのエンコード、③撮像系と色から振幅へのデコード、④多数モジュールの装着性。
①は、小型軽量で測定対象に影響を与えにくい事と、加速度センサのように質量体の慣性力を利用しないために皮膚の振動によるMAを抑えられることから、マイクロフォンが最適であることが明らかになった。円筒型ハウジングケースの空気室の寸法(高さ2 mm×4mm以上の直径)および柔軟な粘着剤で皮膚に装着するという仕様を得た。
②は、計画ではMMGの最大値によって信号範囲を決定する計画だったが、MMGの可視化にあたり、最大値に至るまでの色調の変化がより重要であると考えた。MMGと主観的収縮強度の関係は明らかではないため、主観的収縮強度との関連が明白な筋電図(EMG)を媒介パラメータとした。EMGの振幅をフィードバックし、指定された強度ごとに、主観的筋収縮強度に相当する色を被験者に回答させた。これは、自分の固有受容感覚のみで回答しようとすると、最大随意収縮に対してその10%や20%などの目標筋力を発揮することが困難であるためである。その結果、EMGの等間隔の振幅に相当する印象をもつ赤・緑・青の混色関数が得られた。MMGとEMGの振幅の変換関数も得られた。これらを統合して最終的にMMG振幅を色調に変換する関数が得られた。
さらに④は、多数装着時の分布画像の解析方法の検討を、EMGを用いて先行的に行うことができた。全チャンネルの振幅値をもとに算出した情報エントロピーが疲労に伴う筋活動様式や熟練度の評価に有効であることが示唆された。このように当初想定した課題に加え解析方法の開発も進んでいることから順調といえるが、課題③が未完であり論文投稿と対外的発表が十分に実行できなかったことから、「概ね順調」との自己評価とした。

今後の研究の推進方策

課題①のセンサモダリティと課題②の色調エンコードを統合してモジュールに実装し、製作する。課題③の撮像系と色から振幅へのデコード方法の開発を行う。特に発光部の画像をRGBのスペクトルに分解し、それらの強度比から振幅をデコードするアルゴリズム、およびモジュール形状に基づいた関心領域(ROI)の追跡方法をLabVIEW(National Instruments, Inc.)のマシンビジョンに実装する。可能なら課題④の多数装着性の検討および分布画像の解析方法の開発を進める。また初年度に得られた成果の学会発表および論文発表、産業財産権の出願を進める。

次年度使用額が生じた理由

初年度は、センサモダリティの検討において文献的検討が可能だったことから物品費の執行を抑えることができた。また予備実験の結果から、MMGのMAに対するロバスト性を確保することが、課題③のマシンビジョンの開発よりも急務であると考えた。vMMGを撮像して使用するには、MMGそのものの安定した計測と色調へのエンコードが適切に行われることが必須の条件であったためである。そのためマシンビジョンの構築は第二年度に移した。また人件費に割り当てを増やして関連領域の最新情報の取得と議論のために当初計画よりも旅費を増額する必要があった。結果として生じた未執行額は、第二年度において主に課題③の開発のための執行に追加し使用する予定である。

  • 研究成果

    (2件)

すべて 2022

すべて 学会発表 (2件) (うち国際学会 1件)

  • [学会発表] Study of appropriate indexes for the fatigue assessment of entire muscle groups using multichannel surface electromyography2022

    • 著者名/発表者名
      Megumi Shimura, Yali Xia, Akihiko Mizumoto, Yoshihiro Shimomura
    • 学会等名
      The 15th International Congress of Physiological Anthropology, Eugene, University of Oregon, USA
    • 国際学会
  • [学会発表] ブルズアイ電極を用いた多チャンネル表面筋電図による筋活動分布の評価方法2022

    • 著者名/発表者名
      志村恵、吉田和洋、森健一、古田裕司、夏亜麗、水本壮彦、下村義弘
    • 学会等名
      日本人間工学会第63回大会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi