研究課題/領域番号 |
22K07681
|
研究機関 | 国立研究開発法人国立がん研究センター |
研究代表者 |
小林 和馬 国立研究開発法人国立がん研究センター, 研究所, 研究員 (00747610)
|
研究期間 (年度) |
2022-04-01 – 2027-03-31
|
キーワード | 医用画像 / 合成データ / 自己教師あり学習 |
研究実績の概要 |
医用画像においては、大規模なデータセットを整備することが難しいため、データの少数性が人工知能開発における大きな障壁となっている。特に、データの少数性は、疾患の表現型の中でも、いわゆるロングテール部分に位置するuncommon(まれ)な症例についての有効サンプル数を減少させる。そのため、診断支援システムの本来的なニーズが高いuncommonな症例に対して、深層学習モデルの識別性能を担保することが困難であった。 本研究では、生成データを活用した医用画像解析アルゴリズムの技術基盤を確立することで、希少な症例を補完し、さらに患者のプライバシー保護、データセットのバイアスの解消、流通可能な医療データの作成などを実現することを目的とする。特に、臨床医学においては高度に体系化された専門知が存在するため、医師の知識を生成過程に直接反映させられるような、専門知と相補的な医用画像の生成アルゴリズムを開発することを目指す。 そのための要素技術の一つとして、我々は医用画像中の任意の解剖学的構造に対して、ユーザが自在に編集することを可能にするアルゴリズムを開発した。具体的には、自己教師ありセグメンテーションによって医用画像中の解剖学的構造に一致したセグメンテーション・ラベルを獲得し、このセグメンテーション・ラベルをユーザが編集することによって、任意の解剖学的構造を編集することが可能となった。この技術により編集された合成画像と、編集されていない本物の画像をランダムに臨床医に提示したところ、平均的には本物の画像と見破ることが困難なレベルでの医用画像の生成ができることを示した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
1: 当初の計画以上に進展している
理由
医用画像中の任意の解剖学的構造をユーザが自在に編集できるアルゴリズムを開発した。このアルゴリズムは、要素技術の一つとして位置づけられる。具体的には、自己教師ありセグメンテーションを用いて、医用画像中の解剖学的構造に一致するセグメンテーション・ラベルを獲得する。そして、このセグメンテーション・ラベルをユーザが編集することで、任意の解剖学的構造を編集することが可能となる。 この技術を用いて編集された合成画像と、編集されていない本物の画像をランダムに臨床医に提示する実験を行った。その結果、平均的には、本物の画像と合成画像を見分けることが困難なレベルでの医用画像の生成が可能であることが示された。本結果をまとめた論文は、人工知能技術の医療応用に関する国際的なカンファレンスであるMedical Image Computing and Computer Assisted Intervention (MICCAI 2023)においてオーラル演題として採択された。
|
今後の研究の推進方策 |
今後の計画として、特定の所見を有する医用画像をスケーラブルに生成し、その生成データを用いて深層学習モデルを訓練することで、データの少数性に起因する課題が解決できるかどうかを検証する。最終的な目標は、生成データを次世代の医用人工知能開発の基盤として活用することである。そのために、生成データの利活用を推進していく方針である。
|
次年度使用額が生じた理由 |
本研究計画の前段階においては、既存の設備等により研究の遂行が可能であったため、本年度は物品費等を使用する必要がなかった。次年度以降の発展的課題においては、当初の予算計画に従って、物品費、旅費、人件費等を拠出していく予定である。
|