• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

早期発見性,潜在的意図,及び解釈可能性に着目したフェイクニュース検出手法の開発

研究課題

研究課題/領域番号 22K12271
研究機関岩手大学

研究代表者

張 建偉  岩手大学, 理工学部, 准教授 (20635924)

研究分担者 中島 伸介  京都産業大学, 情報理工学部, 教授 (90399535)
研究期間 (年度) 2022-04-01 – 2025-03-31
キーワードフェイクニュース / 皮肉検出 / 事前学習言語モデル / 早期検出 / コンテキスト
研究実績の概要

本研究ではソーシャルメディアに焦点を当て,フェイクニュースの早期検出,潜在的意図の識別及び深層学習モデルの解釈可能性向上を目的とする.具体的には,(1)情報の解析優先度判別によるフェイクニュースの早期検出,(2)内容及びソーシャルコンテキストの分析による潜在的意図の識別,(3)判別根拠の抽出及び可視化による解釈可能な深層学習モデルの構築に関する技術開発に取り組む.本年度は特に(1)と(2)の課題を中心に研究を推進した.
(1)の課題について,ニュースコンテンツとそれに関連するツイートデータを用いた,機械学習による2STEP のフェイクニュースの早期検出手法を提案した.STEP1 では,ニュース記事の発行直後を想定し,ニュースコンテンツのみを用いてフェイクニュースの早期検出を図る.STEP2 では,ニュース記事の拡散段階を想定し,STEP1 で真偽を判別できなかったニュースコンテンツに対し,ソーシャルコンテクストを時系列に沿って付与することにより真偽を判別していく.両方のSTEP において,真偽の予測確率が閾値以上のニュースを追跡対象から取り除くことで,検出の精度と早期性の両立を図る.提案手法を用いることにより,ニュースの拡散初期において,ベースラインと比較して精度とf 値の向上が確認された.
(2)の課題について,事前学習言語モデル(BERT 及びRoBERTa,DeBERTa)を用いた文脈
理解,テキスト類コンテキスト及び非テキスト類コンテキストを考慮した皮肉文の検出手法を提案した.また,既存研究に多く利用されたハッシュタグで収集したデータセット以外に,皮肉投稿者により収集したデータセットにも手法を適用し,検出パーフォーマンスを比較した.テキスト類及び非テキスト類コンテキストそれぞれの特徴ベクトルを利用し,皮肉検出を行った結果,ベースラインと比較し優位な結果を得た.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

三つの研究課題のうち,二つの課題を中心に進められており,もう一つの課題も検討し始めているため.

今後の研究の推進方策

課題(1)については,実験を進めて,国際会議に投稿する予定である.
課題(2)については,フェイクニュースの潜在的意図をより詳しく分析する.
課題(3)については,解釈可能なフェイクニュース検出のモデルを構築する.

次年度使用額が生じた理由

コロナの関係で,今年度に学会聴講と学会発表できなかった分,次年度に学会聴講や学会発表に使用する予定である.

  • 研究成果

    (5件)

すべて 2023 2022

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件) 学会発表 (3件)

  • [雑誌論文] Quantitatively Interpreting Residents Happiness Prediction by Considering Factor-Factor Interactions2023

    • 著者名/発表者名
      Lin Li, Xiaohua Wu, Miao Kong, Jinhang Liu, Jianwei Zhang
    • 雑誌名

      IEEE Transactions on Computational Social Systems

      巻: 未定 ページ: 1-13

    • DOI

      10.1109/TCSS.2023.3246181

    • 査読あり / 国際共著
  • [雑誌論文] Evidence Mining for Interpretable Charge Prediction via Prompt Learning2022

    • 著者名/発表者名
      Lin Li, Dan Liu, Lingyun Zhao, Jianwei Zhang, and Jinhang Liu
    • 雑誌名

      IEEE Transactions on Computational Social Systems

      巻: 未定 ページ: 1-11

    • DOI

      10.1109/TCSS.2022.3178551

    • 査読あり / 国際共著
  • [学会発表] ニュースコンテンツとソーシャルコンテクストを用いたフェイクニュースの早期自動検出2023

    • 著者名/発表者名
      谷聡馬,佐々木裕多,張建偉
    • 学会等名
      第15回データ工学と情報マネジメントに関するフォーラム(DEIM 2023)
  • [学会発表] Commonsense-aware AttentionとDiscrepancy Resolution Lossを用いたユーモア検出手法の提案2023

    • 著者名/発表者名
      佐々木裕多,張建偉,白石優旗
    • 学会等名
      第15回データ工学と情報マネジメントに関するフォーラム(DEIM 2023)
  • [学会発表] 事前学習言語モデルを用いた皮肉検出におけるコンテキストの有用性の検証2022

    • 著者名/発表者名
      賀毅,張建偉
    • 学会等名
      2022年度情報処理学会東北支部研究会(岩手大学)

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi