研究課題/領域番号 |
22K12273
|
研究機関 | 名古屋工業大学 |
研究代表者 |
武藤 敦子 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (90378240)
|
研究期間 (年度) |
2022-04-01 – 2026-03-31
|
キーワード | POSデータ / 非負値行列因子分解 / 機械学習 / サービス最適化 / 推薦システム |
研究実績の概要 |
本研究は、POSデータ等の飲食店舗内で取得可能なデータを利用し、非負値多重行列因子分解や決定木学習などのデータマイニング手法を応用し包括的に分析することで消費者の潜在的消費ニーズを捉え、変動の多いwithコロナ時代においても安定して店舗と顧客双方の満足度を向上させるシステムを構築することを目的としている。研究実施計画で挙げた3つの研究課題毎に実績を報告する。 【研究課題①サービスの品質・価値の見える化】 POSデータから得られるサービスの品質・価値について議論を行い、サービス提供時間、店内滞在時間などの分析の可能性を発見した。次年度以降の研究課題としたい。 【研究課題②包括的消費パターン抽出・分類による潜在消費需要予測】対象とする全店舗のPOSデータを用いて非負値行列因子分解によって注文傾向を算出し店舗のクラスタリングを行う手法を開発した。研究成果については、研究会にて1件発表を行った。 【研究課題③顧客の消費行動予測による店舗運営最適化】POSデータを用いて飲食店における追加オーダーの商品推薦システムを構築した。従来の協調フィルタリングには欠けていた注文時間を考慮した商品推薦手法を提案し、実際のデータを用いて有効性を確認した。研究成果については、次年度の人工知能学会全国大会へ投稿した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
新型コロナウィルスの流行により、研究室運営や学会参加に制限がかかったため
|
今後の研究の推進方策 |
進捗は遅れているが、これまでの研究成果をもとに引き続き計画にあった研究推進を行う。
|
次年度使用額が生じた理由 |
新型コロナウィルス感染拡大の影響により研究室運営や学会参加が計画通りに進まなかったため次年度に繰り越すこととなった。前年度の申請に準じて研究費の使用を計画している。
|