• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Towards quality monitoring and managing for online learning

研究課題

研究課題/領域番号 22K12299
研究機関会津大学

研究代表者

Truong CongThang  会津大学, コンピュータ理工学部, 上級准教授 (40622957)

研究期間 (年度) 2022-04-01 – 2025-03-31
キーワードQuality of experience / Adaptive streaming / Online learning / Quality model / Media analysis / Multi-feature learning
研究実績の概要

In AY2022, we investigated problems of Quality of Experience (QoE) and video delivery for online learning. We evaluated of a large number of quality models for both PC and mobile users. Because online learning is mostly received via PC displays and has long durations, we found that just a few of quality models were appropriate for measuring the QoE at the learner’s side. Besides, the potential of multi-feature learning approach was studied for modeling. For video delivery, a new solution was proposed to send the same video to multiple users. Our solution employed scalable video coding and multicast mechanism to effectively deliver a video to many users in a session. We also investigated key issues and techniques in system implementation for QoE management for post-pandemic online learning.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

In the last year, we have successfully finished the investigation of both quality models and media delivery mechanism. The research has progressed rather smoothly as planned. It is found that existing quality models are still limited and need significant improvements. Thus, our current focus is on developing effective quality models to support both good perception and good semantic understanding for users.

今後の研究の推進方策

In the AY2023, we will focus on the development of new quality models. The main approach is to take into account multiple features of media contents. Because in online learning, the quality of media contents may affect both the perception and understanding of users, the features will be extracted by considering both the perceptual aspect and semantic aspect of contents. New deep learning methods will be applied for efficient and effective deployment of quality models.

次年度使用額が生じた理由

Amount to be used next Fiscal Year(B-A)is just 146 yen. This amount will be used together with the allocated amount in FY2023 to buy articles for the research.

  • 研究成果

    (5件)

すべて 2022 その他

すべて 国際共同研究 (1件) 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 2件) 学会発表 (2件) (うち国際学会 2件、 招待講演 1件)

  • [国際共同研究] Hanoi University of Science & Tech./VinUniversity(ベトナム)

    • 国名
      ベトナム
    • 外国機関名
      Hanoi University of Science & Tech./VinUniversity
  • [雑誌論文] Scalable Multicast for Live 360-Degree Video Streaming Over Mobile Networks2022

    • 著者名/発表者名
      Duc Nguyen, Nguyen Viet Hung, Nguyen Tien Phong, Truong Thu Huong, Truong Cong Thang
    • 雑誌名

      IEEE Access

      巻: 10 ページ: 38802-38812

    • DOI

      10.1109/ACCESS.2022.3165657

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] QoE models for adaptive streaming: A comprehensive evaluation2022

    • 著者名/発表者名
      Duc Nguyen, Nam Pham Ngoc, Truong Cong Thang
    • 雑誌名

      Future Internet

      巻: 14 ページ: 151

    • DOI

      10.3390/fi14050151

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Towards QoE Management for Post-Pandemic Online Learning2022

    • 著者名/発表者名
      Truong Cong Thang, Yutaka Watanobe, Rage Uday Kiran, Incheon Paik
    • 学会等名
      IEEE 14th International Conf. on Knowledge and Systems Engineering (KSE)
    • 国際学会 / 招待講演
  • [学会発表] Multi-feature Machine Learning with Quantum Superposition2022

    • 著者名/発表者名
      Tuyen Nguyen, Incheon Paik, Truong Cong Thang
    • 学会等名
      IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)
    • 国際学会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi