• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

Computational investigation on the efficacy and safety of the lesion preparation devices in calcified coronary artery with a cracking model of calcification

研究課題

研究課題/領域番号 22K12774
研究機関早稲田大学

研究代表者

朱 暁冬  早稲田大学, 理工学術院, 次席研究員(研究院講師) (90813650)

研究分担者 岩崎 清隆  早稲田大学, 理工学術院, 教授 (20339691)
研究期間 (年度) 2022-04-01 – 2025-03-31
キーワードcracking failure / concrete damaged / numerical simulation
研究実績の概要

To assist in conducting the tensile test, a dedicated tensile fixture model was originally designed and made by a 3D printer. The fixture model was used to fix the calcification sample on the tensile testing machine. Strain-stress data of the calcification samples were obtained and used in the cracking material model.
The numerical simulations were successfully performed for both cutting balloon model and non-compliant balloon models in a calcified artery model system. The pressures of expanding the calcification model and the results of the first principal stresses occurred in the artery models were obtained.
The outcomes have been presented at the international conference EMBC2023 and also will be presented at the 47th Annual Meeting of The Japanese Society of Biorheology.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The strain-stress data of the calcification model has been obtained from both tensile and compression test. Concrete damaged plasticity model was used to mimic the fracture failure of the calcification model in the numerical simulations. Both cutting balloon model and non-compliant balloon model were pressurized to expand and fracture the calcification model.

今後の研究の推進方策

The simulations of deflation of the cutting balloon model and non-compliant balloon model and thereafter stent deployment will be implemented. The deflated cutting/non-compliant balloon model will be removed, and a stent model will be arranged in the calcified artery model. The simulation of stent deployment will be carried out. The lumen gain, such as diameter and area in the calcified artery model, will be used to evaluate the treatment of using both cutting/non-compliant balloon and stent.
Furthermore, the dimensions of blades or wires, which are key roles of the cutting balloons, will be discussed to contribute the improvement of these medical devices via the artery-calcification system with the cracking model.

次年度使用額が生じた理由

In the next fiscal year, both ABAQUS and ANSYS softwares are considered to be purchased to refine the numerical models and conduct the simulations. An original research paper is under written and will be published in a journal with publishing charge for open access.

  • 研究成果

    (2件)

すべて 2024 2023

すべて 学会発表 (2件) (うち国際学会 1件)

  • [学会発表] 有限要素法を用いた破壊特性を有する石灰化病変冠動脈モデルにおける カッティングバルーンの拡張解析2024

    • 著者名/発表者名
      朱 暁冬,YU Dingliang, LUO Weiru,岩﨑 清隆
    • 学会等名
      第47回日本バイオレオロジー学会年会
  • [学会発表] The Simulation of a Fracture Calcification Model Utilizing a Numerical Material Model with Fracture Behavior2023

    • 著者名/発表者名
      Dingliang Yu, Xiaodong Zhu, Weiru Luo, Kiyotaka Iwasaki,
    • 学会等名
      The Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2023)
    • 国際学会

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi