研究実績の概要 |
半直線上の非線形シュレディンガー方程式の初期値境界値問題を考察した。境界となる原点では、解の空間一階微分と自身の冪乗が釣り合うNeumann境界条件を課している。境界の非線形項がゲージ不変でない場合は、非線形項の臨界指数が非線形熱方程式の解の挙動を特徴づける藤田臨界指数の役割を担い、初期値境界値問題の解が有限時間内に原点で質量集中を起こすことがわかった。この結果はNonlinear Anal., 230 (2023), no. 113229 に掲載されている。 シュレディンガー方程式の時間可逆性を利用し、終端値問題の枠組みでBarab-Ozawa臨界指数を持つ消散型非線形シュレディンガー方程式に対して、最適な減衰レイトを持つ解の存在を空間一次元の下で示した。この結果はAsymptot. Anal., 129 (2022), 505-517 に掲載されている。臨界次数を下回る結果についてはNoDEA Nonlinear Differ. Equ. Appl., 29 (2022), no. 41 に掲載されている。 消散型非線形シュレディンガー方程式に時間減衰磁場の効果が備わった場合、磁場の減衰度により解の質量減衰・非減衰を分かつ非線形臨界指数が変動することがわかった。この結果はJ. Differential Equations, 345 (2023), 418-446 に掲載されている。 臨界次数を持つ消散型非線形シュレディンガー方程式に対して、初期条件の大きさに関係なく大域存在および高い微分の評価を一定の消散条件のもとで確立することが可能となった。この結果はJ. Evol. Equ. (2022), no3 Paper No. 59に掲載されている。
|