• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

Learning in-hand manipulation for a compliant underactuated gripper with interactive human supervision

研究課題

研究課題/領域番号 22K14221
研究機関名古屋大学

研究代表者

Colan Jacinto  名古屋大学, 工学研究科, 研究員 (40936746)

研究期間 (年度) 2022-04-01 – 2024-03-31
キーワードlearning manipulation / reinforcement learning / sim-to-real
研究実績の概要

During the current fiscal year, our project has concentrated on Aims 2 and 3 of the research proposal, advancing learning strategies for manipulation tasks. We have successfully developed simulation environments specifically tailored for the cable-driven gripper introduced last year. These environments facilitate interactions with deformable objects and the assessment of reinforcement learning strategies for complex manipulation tasks, such as applying tension or executing folds. Building upon the previous year’s work on the cable-driven gripper, we engineered a three-fingered underactuated robotic hand. This innovative hand features compliant joints and cable-driven actuation, with each finger being actuated by a single motor that manages both flexion and abduction movements. The hand boasts a total of four actuated degrees of freedom (DOFs). Significant progress has also been made in developing the control mechanisms and interaction capabilities of the new hand gripper. We created a simulation environment to train in-hand manipulation of small objects, implementing and validating several reinforcement learning algorithms for this purpose. In particular, Aim 3, the transition to real-world applications, is ongoing and constitutes the focus of our future work. Techniques such as contrastive learning, image-to-image translation, and transfer learning are proving instrumental in rendering our simulation environments more representative of actual scenarios.

  • 研究成果

    (5件)

すべて 2024 2023

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 1件) 学会発表 (3件) (うち国際学会 3件)

  • [雑誌論文] Real-time Inverse Kinematics for Robotic Manipulation under Remote Center of Motion Constraint using Memetic Evolution2024

    • 著者名/発表者名
      Ana Davila, Jacinto Colan, Yasuhisa Hasegawa
    • 雑誌名

      Journal of Computational Design and Engineering

      巻: - ページ: -

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Comparison of fine-tuning strategies for transfer learning in medical image classification2024

    • 著者名/発表者名
      Ana Davila, Jacinto Colan, Yasuhisa Hasegawa
    • 雑誌名

      Image and Vision Computing

      巻: 146 ページ: 105012

    • DOI

      10.1016/j.imavis.2024.105012

    • 査読あり / 国際共著
  • [学会発表] Gradient-Based Fine-Tuning Strategy for Improved Transfer Learning on Surgical Images2023

    • 著者名/発表者名
      Ana Davila, Jacinto Colan, Yasuhisa Hasegawa
    • 学会等名
      2023 International Symposium on Micro-NanoMechatronics and Human Science
    • 国際学会
  • [学会発表] Enhancing Gradient-Based Inverse Kinematics with Dynamic Step Sizes2023

    • 著者名/発表者名
      Jacinto Colan, Ana Davila, Yasuhisa Hasegawa
    • 学会等名
      2023 International Symposium on Micro-NanoMechatronics and Human Science
    • 国際学会
  • [学会発表] Manipulability maximization in constrained inverse kinematics of surgical robots2023

    • 著者名/発表者名
      Jacinto Colan, Ana Davila, Yasuhisa Hasegawa
    • 学会等名
      2023 IEEE International Conference on Mechatronics and Automation (ICMA)
    • 国際学会

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi