• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

AI based optimization of the spectrum and energy efficiency for Intelligent 6G

研究課題

研究課題/領域番号 22K14263
研究機関電気通信大学

研究代表者

李 傲寒  電気通信大学, 大学院情報理工学研究科, 助教 (50876810)

研究期間 (年度) 2022-04-01 – 2025-03-31
キーワードIntelligent 6G / AI based optimization / Spectrum efficiency / Energy efficiency
研究実績の概要

1) Automatics communication parameter decision in a practical uncertain wireless environment. It is verified that spectrum efficiency can be improved by considering more transmission parameters, such as transmission interval.
2) AI algorithms to improve energy efficiency. A lightweight AI algorithm has been proposed to improve the energy efficiency while an experimental platform for verifying the performance of the proposed AI algorithm in energy efficiency is built.
3) A Quantum-annealing-based ultrafast optimization algorithm is proposed for optimizing the multiplexed techniques-based network performance.
Based on the research results, two journal papers have been published, and more than three reports have been presented or will be presented in international conferences/workshops.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

To achieve the goals of this project. I aimed to research the first and the second questions and make preliminary preparations for the third questions. That is, [Q1] Joint dynamic spectrum access and multiplexing techniques for optimizing the spectrum and energy efficiency. [Q2] Automatic communication parameter decision based on AI in a practical uncertain wireless environment. [Q3] Development of lightweight AI algorithms to improve energy efficiency.
Moreover, at least two journal papers and two international conference papers are expected to be submitted. Regarding [Q1] and [Q2], two journal papers have been published, while two journal papers are under revision. Regarding [Q3], the proposed algorithm has been presented at a domestic conference and international workshop.

今後の研究の推進方策

1) Compare the energy efficiency by jointly considering the dynamic spectrum access and multiplexing techniques and without a joint consideration to clarify how much energy efficiency can be improved. Moreover, more efficient multiplexing techniques will be considered.
2) Improve the spectrum and energy efficiency of the proposed AI algorithm by considering more transmission parameters.
3) Joint optimization of AI and wireless communications. Specifically, the object optimization problem of the joint optimization of AI and wireless communications will be formulated. Then, quantum annealing-based high-speed optimization algorithms will be proposed to solve the formulated objective optimization problem.

  • 研究成果

    (9件)

すべて 2024 2023

すべて 雑誌論文 (2件) (うち査読あり 2件、 オープンアクセス 2件) 学会発表 (6件) (うち国際学会 3件) 学会・シンポジウム開催 (1件)

  • [雑誌論文] High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine for NOMA Systems2024

    • 著者名/発表者名
      Otsuka Teppei、Li Aohan、Takesue Hiroki、Inaba Kensuke、Aihara Kazuyuki、Hasegawa Mikio
    • 雑誌名

      IEEE Transactions on Vehicular Technology

      巻: 73 ページ: 707~723

    • DOI

      10.1109/TVT.2023.3300920

    • 査読あり / オープンアクセス
  • [雑誌論文] Combinatorial MAB-Based Joint Channel and Spreading Factor Selection for LoRa Devices2023

    • 著者名/発表者名
      Urabe Ikumi、Li Aohan、Fujisawa Minoru、Kim Song-Ju、Hasegawa Mikio
    • 雑誌名

      Sensors

      巻: 23 ページ: 6687~6687

    • DOI

      10.3390/s23156687

    • 査読あり / オープンアクセス
  • [学会発表] Fully Autonomous Distributed Transmission Parameter Selection Method for Mobile IoT Applications Using Deep Reinforcement Learning2024

    • 著者名/発表者名
      Seiya Sugiyama, Keigo Makizoe, Maki Arai, Mikio Hasegawa, Tomoaki Otsuki, and Aohan Li
    • 学会等名
      IEEE VTC2024-Spring (The 2024 IEEE 99th Vehicular Technology Conference)
    • 国際学会
  • [学会発表] An Autonomous and Distributed Transmission Parameters Selection Method Using Deep Reinforcement Learning in Mobile LoRa Networks2024

    • 著者名/発表者名
      Seiya Sugiyama, Keigo Makizoe, Maki Arai, Mikio Hasegawa, Tomoaki Otsuki, and Aohan Li
    • 学会等名
      GlobalNet Workshop 2024 in Hiroshima
    • 国際学会
  • [学会発表] Transmission Parameters Selection Method Using Reinforcement Learning for Improving Energy Efficiency in Massive IoT Systems2024

    • 著者名/発表者名
      Ryotai Airiyoshi, Seiya Sugiyama, Mikio Hasegawa, Tomoaki Otsuki, and Aohan Li
    • 学会等名
      GlobalNet Workshop 2024 in Hiroshima
    • 国際学会
  • [学会発表] モバイルLoRaネットワークにおける深層強化学習による自律分散型送信パラメータ選択手法2024

    • 著者名/発表者名
      椙山誠也, 牧添啓吾, 新井麻希, 長谷川幹雄, 大槻知明, 李傲寒
    • 学会等名
      電子情報通信学会総合大会
  • [学会発表] Massive IoT システムにおけるエネルギー効率を改善するための強化学習による送信パラメータ選択手法2024

    • 著者名/発表者名
      有吉良太, 椙山誠也, 長谷川幹雄, 大槻知明, 李傲寒
    • 学会等名
      電子情報通信学会総合大会
  • [学会発表] Double Deep Q NetworkによるモバイルIoTアプリケーションのための自律分散型送信パラメータ選択手法2024

    • 著者名/発表者名
      椙山誠也, 牧添啓吾, 新井麻希, 長谷川幹雄, 大槻知明, 李傲寒
    • 学会等名
      電子情報通信学会無線通信システム研究会
  • [学会・シンポジウム開催] GlobalNet Workshop 2024 in Hiroshima2024

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi