• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

医療者とAIの相互連携システム構築を目的とした解釈可能な機械学習予測モデルの開発

研究課題

研究課題/領域番号 22K17336
研究機関久留米大学

研究代表者

松本 晃太郎  久留米大学, 付置研究所, 講師 (60932217)

研究期間 (年度) 2022-04-01 – 2025-03-31
キーワード機械学習の解釈性手法 / 機械学習予測モデル / SHAP / 電子クリニカルパス
研究実績の概要

予測モデル実装の対象施設と協議を行った結果、当初研究対象としていた脳卒中疾患を変更し、せん妄の予測に切り替えた。本邦では、2020年度診療報酬改定にて、せん妄ハイリスク患者ケア加算が新設され、すべての入院患者に対してせん妄のリスク因子の確認を行い、ハイリスク患者に対してせん妄対策を実施する体制が評価されるようになった。上記背景より、本研究との相互補完的関係にあると判断し、対象をせん妄予測とした。実装対象施設では既にせん妄発生を予測するためのリスクスコアを独自に開発していたが、対象施設の電子カルテデータを取得して確認したところ、偽陽性率と偽陰性率に改善の余地が認められた。そこで、取得可能なデータを用いて機械学習と解釈性手法による解析を実施し、リスクスコアの改訂を行った。さらに、せん妄のリスク症例への対策として、せん妄対策用の新しいクリニカルパスを導入した。この一連の流れを国際学会で発表しbest paper awardを受賞した(Koutarou Matsumoto, Yasunobu Nohara, Mikako Sakaguchi, Yohei Takayama, Hidehisa Soejima and Naoki Nakashima, “Developing a Learning Health System for Delirium Using XAI”, Proceedings of the Asia Pacific Association for Medical Informatics 2022)。また、関連する内容が国際誌に受理された(Matsumoto K, Nohara Y, Sakaguchi M, Takayama Y, Fukushige S, Soejima H, et al. Delirium Prediction Using Machine Learning Interpretation Method and Its Incorporation into a Clinical Workflow. Appl. Sci. 2023, 13(3), 1564)。機械学習と解釈性手法を用いた上記の取り組みは、電子カルテの予測モデル実装の前段階的な位置づけとして、多くの示唆に富んだ学びを得た。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

当初予定していた対象疾患は変更したものの、現在の医療情勢や実装対象施設のニーズに合致した疾患を選定することができた。また、機械学習と解釈性手法を組み合わせたアプローチでリスクスコアの改訂を行い、予測モデルを電子カルテに実装する上で必要な知見が得られた。

今後の研究の推進方策

機械学習と解釈性手法を用いてリスクスコアを改訂して半年以上が経過した。そこで、リスクスコア改訂により、経験的に設定されていたリスクスコアと比較してどの程度偽陽性率と偽陰性率を改善させたかを評価する。その結果を踏まえ、電子カルテに予測モデル自体を実装するための協議を開始する。実装対象施設の電子カルテのベンダーに確認し、予測アルゴリズムを実装することが技術的に可能なことは確認できた。最適な予測アルゴリズムの選定を行うために、複数ある機械学習アルゴリズムの汎化性能の精査を行い、現在論文投稿準備中である。解釈性手法であるSHapley Additive exPlanationsの結果を症例毎にアウトプットさせる仕組みや、電子クリニカルパスへ連動させる方法などは引き続きベンダーと協議する。

次年度使用額が生じた理由

使用するデータ容量等の詳細が不明であったことや、2022年度時点で購入可能なPCのスペックが限られていたこともあり、物品で差額が生じた。2023年度は画像等も含めた膨大なデータの取得及び解析を行うため、外付けGPUやHDDの購入も検討している。また、予測モデルの実装研究であるため、当初計画していた以上に各年度で多くの論文を公表することを想定しており、該当論文の英文校正費や論文投稿料に用いる。

  • 研究成果

    (3件)

すべて 2023 2022

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (1件) (うち国際学会 1件) 図書 (1件)

  • [雑誌論文] Delirium Prediction Using Machine Learning Interpretation Method and Its Incorporation into a Clinical Workflow2023

    • 著者名/発表者名
      Koutarou Matsumoto, Yasunobu Nohara, Mikako Sakaguchi, Yohei Takayama, Shota Fukushige, Hidehisa Soejima, Naoki Nakashima
    • 雑誌名

      applied sciences

      巻: 13 ページ: 1564

    • DOI

      10.3390/app13031564

    • 査読あり / オープンアクセス
  • [学会発表] Developing a Learning Health System for Delirium Using XAI2022

    • 著者名/発表者名
      Koutarou Matsumoto, Yasunobu Nohara, Mikako Sakaguchi, Yohei Takayama, Hidehisa Soejima, Naoki Nakashima
    • 学会等名
      Asia Pacific Association for Medical Informatics 2022
    • 国際学会
  • [図書] 医療者とAIの相互連携システムの構築2022

    • 著者名/発表者名
      松本晃太郎, 野原 康伸, 副島 秀久
    • 総ページ数
      2
    • 出版者
      Medical Science Digest

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi